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Abstract

Over the last nearly 20 years noncommutative geometry has been a lively area of research in the-
oretical physics as well as mathematics and has provided some very interesting results especially
for high energy physics. Among these is the existence of new classes of soliton solutions in field
theories whose properties remain subject of intensive study.

In this thesis several aspects of solutions to the equations of motions to noncommutative
field theories are investigated in detail. The main focus of the analysis will be on the integrable
chiral or modified unitary sigma model with U(n)-valued fields as introduced by Ward and its
noncommutative extension where the above mentioned new solutions arise. Of particular interest
in this context are to us the question of stability of static solitons and the applicability of the
so-called adiabatic approach to as a means to approximate time-dependent solutions by geodesic
motion in the moduli space of static solutions.

After some introductory remarks on noncommutativity and its role in physics we begin in
the second chapter by reviewing the basic ingredients of noncommutative geometry as needed
for our analysis. Having set the stage, we then proceed to present the Ward model together
with its noncommutative extension and give a unified exposition of its known static solutions.
This model, as the prime example of an almost Lorentz-invariant field theory in 1+2 dimensions,
has several virtues which make its analysis worthwhile. First of all it is integrable thus allowing
for powerful, well developed, techniques to generate soliton solutions. At the same time these
feature interaction among them. Furthermore, the commutative counterpart of the Ward model
has been investigated in great detail such that many results are available for comparison.

Next, the question of stability for the presented static solutions is considered. This stability
is governed by the quadratic form of the fluctuations, which, upon concentrating on the case
of diagonal U(1) solutions, is explicitly computed. We show that the considered solutions are
stable within a certain subsector of possible configurations, namely the grassmannian ones, and
become unstable upon embedding them into the full unitary sigma model. Finally, we remark
on some possible generalization of these results.

This subject is followed, after a brief review of time-dependent Ward model solitons, by the
application of the adiabatic approach, as proposed by Manton, to the static solutions. Qur ana-
lysis shows that this approximation yields the same results for a wider class of noncommutative
field theories as the terms in the action constituting the difference between these have no effect on
the moduli space dynamics. Since exact time-dependent solutions to the Ward model are known,
we are then able to compare the results of the moduli space approximation employed with the
exact time behavior in the U(1) case, showing a bad matching of these two. We exemplify these
discrepancies with some simple multi-soliton examples and give possible reasons for them.

Even though we believe that the work presented in this thesis sheds some light on the issue of
noncommutative solitons, there remains a host of unsolved questions whose investigation seems
rewarding. We try to summarize the, in our opinion, most urgent ones at the end of the chapters
on the stability analysis and on the adiabatic approach.

Keywords: Noncommutative Solitons, Stability Analysis, Adiabatic Approximation






Zusammenfassung

In den letzten ungefdhr 20 Jahren hat sich die nichtkommutative Geometrie zu einem aktiven
Forschungsgebiet sowohl der Mathematik als auch der Physik entwickelt und insbesondere in
der Hochenergiephysik zu interessanten neuen Resultaten gefiihrt. Hierzu gehort insbesondere
die Existenz neuer Klassen von feldtheoretischen Losungen, deren Eigenschaften Gegenstand
aktueller Forschung sind.

Die vorliegende Arbeit befasst sich mit verschiedenen Aspekten dieser Losungen. Hierbei
stehen das von Ward eingefiihrte integrable chirale oder modifizierte Sigma Modell mit U(n)-
wertigen Feldern, sowie dessen nichtkommutative Erweiterung, im Zentrum unseres Interesses.
Insbesondere widmen wir uns den Fragen nach der Stabilitit der statischen Losungen und der An-
wendbarkeit des so genannten adiabatischen Zuganges auf diese. Letzterer approximiert zeitab-
héngige Losungen durch eine geodétische Bewegung im Modulraum der statischen Losungen.

Nach einigen einfiihrenden Worten zur Nichtkommutativitdt und ihrer Rolle in der Physik,
présentieren wir im zweiten Kapitel die notwendigen Grundlagen der nichtkommutativen Geome-
trie, um anschliefend das Wardmodell als nahezu lorentzinvariantes Modell in 1+2 Dimensionen
einzufithren. Die statischen Losungen der zugehérigen Bewegungsgleichung werden an dieser
Stelle eingehend diskutiert. Das Wardmodell besitzt einige bemerkenswerte Eigenschaften, die
eine griindliche Untersuchung interessant erscheinen lassen. Zu diesen gehort dessen Integra-
bilitdt, die uns effektive Techniken zur Konstruktion von solitonischen Losungen zur Verfiigung
stellt, durch die im vorliegenden Fall insbesondere auch wechselwirkende Solitonen generiert wer-
den. Dariiber hinaus erlauben die zahlreichen im kommutativen Fall erzielten Resultate einen
direkten Vergleich mit den Ergebnissen einer Untersuchung im nichtkommutativen Fall.

Im Anschluss diskutieren wir die Stabilitdt der présentierten statischen Losungen. Diese
wird durch die quadratische Form fiir die Stérungen bestimmt, die sich bei Betrachtung von
diagonalen U(1) Losungen explizit angeben ldsst. Wir zeigen, dass die untersuchten Lisungen in
einem bestimmten Unterraum aller méglichen Konfigurationen stabil sind. Dieser Unterraum ist
durch die Grassmannschen Konfigurationen gegeben und deren Einbettung in das vollstdndige
unitére Sigma Modell fiihrt zu einer Instabilitdt der entsprechenden Losungen. Schlieflich zeigen
wir einige mogliche Erweiterungen dieser Resultate auf.

Einer kurzen Darstellung der bekannten zeitabhéngigen Losungen folgt dann die Anwendung
der von Manton eingefiihrten adiabatischen N#herung auf das vorliegende Modell. Diese Un-
tersuchung lasst sich in gleicher Weise auf eine weitaus grofere Klasse von nichtkommutativen
Feldtheorien iibertragen. Da zeitabhéngige Losungen des Wardmodells bekannt sind, kénnen wir
die Ergebnisse der durchgefithrten Modulraumapproximation mit den exakten Resultaten verglei-
chen und finden eine schlechte Ubereinstimmung im U(1) Fall. Dieses wird an einigen Mehrsoli-
tonenlésungen veranschaulicht, und wir geben mégliche Erklarungen fiir diese Diskrepanz.

Obwohl die vorliegende Arbeit einige Aspekte nichtkommutativer Solitonen kldren kann,
bleiben viele interessante Fragen unbeantwortet. Eine Zusammenstellung der, in unseren Au-
gen, wichtigsten Punkte findet sich am Ende der Kapitel zur Stabilitdtsuntersuchung und zur
adiabatischen Naherung.

Schlagworte: Nichtkommutative Solitonen, Stabilitédtsuntersuchung, Adiabatische N&herung
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CHAPTER 1

MOTIVATION AND INTRODUCTION

The subject matter of this thesis is a well developed and ubiquitous topic in theoretical
physics, namely classical field theory, which has been endowed with new and interesting
facets due to the incorporation of noncommutativity during the last two decades. This
new aspect has brought about many truly novel results and led to a number of fruitful de-
velopments in this area which encompass a wide spectrum of applications in mathematics
as well as physics.

We will address a particular example of a noncommutative field theory, the so-called
Ward model, and give a concise review of its known features before investigating some
new results concerned with the stability of its solutions and the approximation of time-
dependent solitons in the framework of the adiabatic approach.

EMERGENCE OF NONCOMMUTATIVITY

It has been postulated as early as 1947 [106, 107, 129] that the structure of space itself
should be modified at very small distances by the emergence of a noncommutativity of
the spatial coordinates. Supposedly, the notion of spatial noncommutativity is even older
and has been communicated by Heisenberg in a letter to Peierls, suggesting that problems
of infinite self-energies may be ameliorated this way. According to an account of Jackiw
[65] Peierls in turn conveyed this idea to Pauli, Pauli to Oppenheimer and the latter
eventually to Snyder who wrote the aforementioned paper.

This idea of noncommutativity is implied, very similar to the canonical quantization of
phase space, by the transition of the coordinates z‘ on spacetime to hermitian operators
2%, satisfying a Heisenberg algebra

(&, 2] = 16,

for a constant real-valued antisymmetric matrix § = (0”) of dimension length squared.
Noncommutativity thus effectively induces a smearing out of spacetime and the notion of
a point becomes pointless.

Nevertheless this line of thought has not been pursued very enthusiastically by physi-
cists in the following years and it was not until the early 80’s with the pioneering work
of Alain Connes |13, T4, 6] that the idea of noncommutative spaces received a notable

I This pun is an allusion to the work of von Neumann, who tried to define these “quantum” spaces in
a rigorous way and dubbed his studies “pointless geometry” (see [112]).
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increase in attention by physicists, again. Since then, huge efforts have been invested into
the study of field theories on noncommutative spaces. It is impossible to list all relevant
references in this vast context and we just give some examples.

One of the early instances of noncommutative field theories is Yang-Mills theory con-
sidered on a noncommutative torus [I5], which can be derived from string theory [I§]. In
fact, string theory provides further evidence for noncommutativity in spacetime. Seiberg
and Witten, extending earlier ideas in this direction, were able to prove [105] that type IIB
superstring theory in a constant B-field background can be formulated in terms of a gauge
field theory on a noncommutative spacetime upon taking the so-called Seiberg-Witten zero
slope limit. Instigated by this analysis, many subsequent works investigated the relation
between string theory and noncommutativity. It turns out that noncommutative field
theories often inherit features from the underlying string theory thus allowing to transfer
problems arising in string theory to questions in noncommutative field theories. In this
way noncommutative field theory has, for example, been employed to study tachyon con-
densation [2, 21, 125] and other issues related to D-branes (for a review see e.g. |53, 49]).
Besides the above mentioned directions, ideas of noncommutative field theories have en-
tered many other areas of theoretical physics, of which we only want to mention the
attempt to construct a noncommutative theory of gravity (see e.g. [83, 12, B, ITL, 6, 113]).
More exhaustive reviews of noncommutativity and its applications in physics can, for
example, be found in [17, 69, 116, 84, @5, 93, 26, 53, 112].

The introduction of the ideas of noncommutative geometry into field theory thus offers
a prospective way to enlarge our current understanding of nature and is believed to provide
a possible route towards the ultimate goal of unifying quantum field theory with gravity.

SOLITONS IN NONCOMMUTATIVE FIELD THEORY
AND THE MODIFIED WARD MODEL

The particular aspect of noncommutative field theory that this thesis is devoted to is the
study of noncommutative solitons and their properties.

In ordinary field theory, solitonic solutions, or solitons for short, are usually defined
[103] as stable finite-energy solutions to the equations of motion of some minkowskian ac-
tion functional. Here, the term stable refers to the somewhat vague but crucial property
that solitons emerge mainly unaltered from a possible collision and may thus be inter-
preted as extended particles. A thorough study of soliton solutions and their properties
is motivated by their ubiquitous appearance in field theories which renders them interest-
ing objects for mathematicians and physicists alike (for a review see e.g. [T03] [86], [1T4]).
Apart from their attractiveness as exact solutions to field theories by themselves, solitons
also play a crucial role in physics as nontrivial classical solutions around which the path
integral may be expanded.

A Moyal deformation of the underlying space leads to a rewarding generalization of
these ideas to field theories on noncommutative spaces. Such field theories offer not only



smooth deformations of well known soliton solutions but entirely new types of noncommu-
tative solitons (see, e.g. [42, b3]). This property is most prominent when the commutative
limit yields a free theory, because the soliton configurations are then forced to become
singular in this limit. To mention just one example, we refer to the U(1) sigma model
in two dimensions. Upon replacing the ordinary product by a star-product we find a
rich class of soliton solutions. Adding a temporal dimension, these not only represent
static solutions of a Wess-Zumino-Witten-extended sigma model (see [123], 126] for this
extensions and [73] for a discussion of solutions) but also of the Yang-Mills-Higgs BPS
equations on noncommutative R2. In fact, the full BPS sector of the Yang-Mills-Higgs
system is, in a particular gauge, given by the solutions to the sigma-model equations of
motion. To make contact to our previous discussion, we note that multi-solitons in non-
commutative euclidean two-dimensional sigma models are of interest as static DO-branes
inside D2-branes with a constant B-field background [72].

The described noncommutative WZW-extended model, also known as Ward model,
will be the main topic of this thesis. Even though many aspects of this model are already
well understood |72, [73), [74, Ol 127, K6, [75] [76], the issues covered in this thesis certainly
deserve some careful examination.

OUTLINE

The outline of this thesis is as follows:

To set up notation, we give a brief account on the basics of noncommutative geometry
in the second chapter, where we present both the star-product as well as the operator
formulation of field theories on the Moyal-deformed complex plane. This exposition in-
cludes the introduction of the Moyal-Weyl map as mediator between these two pictures.
Furthermore, we fix conventions for the coherent states and show how translations and
rotations are realized on them as unitary operators.

Chapter three includes some general remarks on low dimensional sigma models and
shows how Derrick’s theorem restricts the existence of nontrivial solutions to these. We
then provide a definition of the notion of integrability and introduce the Ward model
as an example of an integrable field theory in 1+2 dimensions. Its basic properties are
discussed before shifting the focus to the noncommutative realm, where we describe the
modified Ward model, both in the star-product as well as in the operator picture. We
conclude this account by showing how this model can be related to scalar field theories
via the implementation of the sigma-model constraint as a Lagrange multiplier.

The static solutions to the noncommutative Ward model are discussed in chapter four.
After introducing the subset of grassmannian solutions and their BPS bound, we provide a
complete description of abelian solitons. In addition to presenting nonabelian solitons, as
well, we also embed the discussion into the framework of uniton theory and give examples
of non-BPS solutions.

A detailed analysis on the stability of the static solutions discussed is then carried
out in the fifth chapter. It is based on the work [24] together with A. Domrin and
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O. Lechtenfeld. After presenting the Hessian, i.e. the quadratic form of the fluctuations,
we identify its invariant subspaces, thus allowing for a decomposition of the fluctuations
into different sectors. We demonstrate that solitons are stable within their respective
Grassmannian but become unstable upon embedding them into the full unitary sigma
model. For the case of diagonal U(1) BPS solutions, the spectrum of the Hessian is
explicitly computed, analytically as well as numerically, and the moduli of the solitons
are identified among its zero modes. Furthermore, we address the fluctuation problem in
the nonabelian case for the example of the noncommutative U(2) model. Summarizing the
achieved results at the end of the chapter, a list of related unsolved questions is provided.

For later comparison with the findings in the final chapter we review results on time-
dependent Ward solitons in chapter six. After presenting the corresponding linear system
we give some simple examples of soliton lumps moving with equal and constant veloci-
ty in the Moyal plane. Employing the dressing ansatz it is possible to generate more
complicated multi-solitons with distinct velocities, some of which exhibit scattering. Un-
fortunately, there are no abelian solutions among these. To exemplify this, we display the
breather-like behavior of the arising U(1) two-soliton.

In chapter seven we devote ourselves to the application of Manton’s adiabatic approach
to the noncommutative Ward model. The ensuing results have been published together
with M. Klawunn and O. Lechtenfeld in [67]. Section [Tl gives a general overview of the
underlying idea. We proceed by analyzing the moduli space of abelian sigma model r-
solitons, identifying it as a smooth Kéhler manifold, namely the r-th symmetrized power
of the complex plane. Its Ké&hler metric is computed and we investigate the limits of
large and small mutual distances. This enables us to consider moduli-space trajectories
for the scattering of two multi-soliton lumps yielding a universal 90° scattering angle for
head-on collision, in contrast to the exact solution. We put forward possible reasons for
this mismatch and close the chapter with some comments on the encountered difficulties
for the adiabatic approach in the nonabelian setting.

CONVENTIONS

Throughout the subsequent chapters we employ the following conventions:

Greek letters p, v, A, ... € {0,1,2} are used to denote the coordinates (z*) := (¢, z,y)
in the (14-2)-dimensional Minkowski space R»?, where the metric is taken as n = (1,,) =
diag(—1,+1, +1) and the totally antisymmetric Levi-Civita tensor has the property %2 =
1. As usual, we then use Latin letters i,7,... € {1,2} for the restriction to the spatial
coordinates. But note that these are also used for other purposes, e.g. to enumerate the
moduli in chapter [

For the introduction of the modified nonlinear sigma model, an extension of the space-
time to 1+3 dimensions is needed, where the coordinates are denoted by (z%) := (¢, z,y, p)
with a, b, c,... € {0,1,2,3} and the totally antisymmetric tensor is defined with 9123 = 1.

Since we take traces in different contexts, it is convenient to set up our notation here:
We employ tr for the trace over a group space while Try, denotes the trace over the Hilbert



space ‘H and the abbreviation Tr := tr Tryy = Try tr is used for the combination of both
these operations.

Furthermore, in dealing with noncommutative field theory one usually encounters
some notational ambiguities since the term “noncommutative” is also used to indicate
fields taking values in some nonabelian group space. To make definitions distinct we refer
to the latter situation as “nonabelian” case and reserve the notation “noncommutative”
solely for noncommutative space structures.






CHAPTER 2

BASIC NOTIONS OF NONCOMMUTATIVITY

Before analyzing field theories on noncommutative spaces we review the essential
basics of noncommutative geometry in this chapter. The exposition will be restricted to
material needed for the subsequent analysis. More detailed discussions of this wide area
in relation to field theory can, for example, be found in the reviews [I16, 26l b3, 112].

2.1 DEFORMATIONS OF THE ORDINARY PRODUCT

To understand how noncommutativity enters into field theory from a mathematical point
of view, we recall [93] the remarkable results instigated by the seminal works of Gelfand,
Grothendieck and von Neumann, which roughly state that the geometrical properties of
a given space X’ can entirely be captured by the properties of the algebra A = (C*(X), )
of smooth functiond] on X together with pointwise addition and multiplication.

Noncommutativity can then be introduced into field theories on the space X by replac-
ing the ordinary algebra A by a deformed algebra A,, where the product of two functions
is replaced by a noncommutative product usually called the star-product:

fr9 — fxg, forfgeC(X).
Even though this product generically violates commutativity it still retains associativity.

The fundamental relation for the algebra A, is then, at least locally, given by the
star-commutator between coordinates z* on X

[zt 2], = at * ¥ — ¥ x 2t = 1O (2.1)
where C' := (C*) is a real antisymmetric rank two tensor field of dimension (length)?

parametrizing the noncommutativity. This change of algebra has drastic consequences of
which some will be presented in the following analysis.

*

There exists an extensive amount of literature on general deformations in the above
sense and its physical applications. We refer the reader to the texts [T, 69, 84, 45, 03] and
references therein. Instead of dealing with the general case, we will now concentrate on
more specific and quite simple examples of noncommutative deformations in the following.

For this, we employ an expansion of C' in terms of the coordinates x* as

CH = 0" + f* af + R, aPa™ + ... (2.2)

ISticking to smooth functions will sometimes prove to be too restrictive or too general. We will
therefore follow standard physicists practice and be somewhat sloppy with our notation always implying
that we allow for all functions yielding well defined expressions in the context considered.
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2.2 CONSTANT DEFORMATIONS AND REPRESENTATIONS OF
NONCOMMUTATIVITY

Now and in the following we consider the star-commutator to be of the special form

= 10" (2.3)

[2#, 2],

for some constant skew-symmetric real noncommutativity tensor 6 := (0**). Note that
this algebraic structure is nothing but a Heisenberg algebra which is well known from
quantum mechanics, where it appears as algebra for the positions and momenta.

This star-product implies what is usually |7, &, 26] referred to as deformation Ay of
the algebra A = (C*°(X), ), where the algebra Ay differs from 4 in the multiplication
law only. In the limit # — 0 we recover the commutative algebra A again.

2.2.1 The Groenewold-Moyal product

Additionally choosing X = R?!, d € N yields the easiest examples of star-deformed
algebras and its corresponding noncommutative spaces, namely #-deformed real space
R2? and, as the particular case of d=1, the so-called Moyal plane.

Example 2.1 (R3¢)

The #-deformed real space R?*® which is denoted R2? is defined by the deformation of the
algebra of smooth functions on R?? via the Groenewold-Moyal product, sometimes also
called Moyal product, which is given for f,g € C®(RR*) as |46, Y]

frxg = Ff o3 u0* 3, qg. (2.4)

Thus the above star-product is defined via the Poisson bi-vector field 0#0u ® dv induced
by the noncommutativity tensor 6. Note that this noncommutativity parameter can
always be brought to a canonical form 6. by some orthogonal transformation O as

0 = 0" P (_00' %) O = 0760,0, 0;€Rxy.
i=1 ’

For notational simplicity we will always assume that 6 is of the particular form 6.

Example 2.2 (The noncommutative plane)

The noncommutative plane, also known as the Moyal plane, derives from the above ex-
ample as special case of two dimensions. We thus have coordinates x,y with nontrivial
star-commutator

[z,y], = 160, (2.5)

for a constant real parameter 6 which, without loss of generality, we assume to be positive.
Even though the noncommutative plane will be of primary importance in most of this
thesis we will, for now, stick to the more general setting of R2? and specialize later, where
necessary.
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To analyze the properties of the star-product (Z4l) we expand it for some functions f
and g into

f*g — fegauewaug
= f-qg+ %Qﬂyﬁuf&,g + ...
= f - g + total derivatives

and deduce that the integral of a product of two square integrable functions does not
change under replacement of the ordinary product with the star-product introduced above,
ie.

/dexf*g = /dexf-g. (2.6)

Furthermore, it will prove convenient to introduce complex coordinates z* on R?? by
2= 22 pia?t) forie {1,...,d}, (2.7)

and to rescale them to dimensionless coordinates via

2 — d = , (2.8)

for 6; # 0, such that the basic star-commutation relation now reads
[, @], = &Y. (2.9)

Formula (Z9) thus exhibits the intimate connection between the considered noncommu-
tativity and the quantum mechanics of harmonic oscillators that we already alluded to in
the beginning of this section. This relation will now be exploited further by expressing
the #-deformed real space by operators on some Hilbert space.

2.2.2 Operator formalism

As mentioned above, another way to approach noncommutativity in the case of a constant
deformation parameter 6 is the formulation on operator space. Consider again the com-
mutation relation (Z3]). This Heisenberg algebra may also be realized by promoting the
coordinates to linear operators acting on on some auxiliary Hilbert space ‘H and satisfying
23). This different representation will be introduced in this subsection and is usually
much more convenient for carrying out computations explicitly.

Replacing the (rescaled) coordinates (7)) and () by the operators 2%, 27T and a’, a’
satisfying

[2,27T] = 26,691 and [a',d'T] = 6V 1, (2.10)
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we see that the rescaled coordinate operators are just creation and annihilation operators
of a d-dimensional harmonic oscillator Fock space which we denote by HHO =: H. A basis
for HHO is, as usual, given by applying the creation operators @'’ to the ground state or
vacuum |0)

ZT
k1, ... kg H for k; € Ng, (2.11)
i=1
where a'|0) = 0 for all @ € {1,...,d}. A remark on notation seems in order here.
We will in this section explicitly indicate operators by a “”” but leave this out in the

following sections for notational simplicity as long as we are convinced that there will be
no confusions.

The Moyal-Weyl map

The reason why the representation of the noncommutativity algebra by operators on a
Hilbert space provides a useful tool for computation is that the two mentioned descriptions
of f-deformed real space are equivalent. There actually exists an isomorphism between an
appropriate algebra of functions on noncommutative real space and an algebra of linear
operators on the Hilbert space introduced above.

Consider [T12] the commutative algebra of functions on R?? belonging to the Schwarz
class, i.e. decreasing rapidly with all their derivatives at infinity. Elements of this algebra
are mapped to corresponding linear operators by the Moyal-Weyl map [124, 89]. In
complex coordinates (7)) it is given for a function f(z,z), where z := (2%) is a collective
notation for the coordinates, by

f(g)z) — F(dT,&) — /ddpdd ]g( ) i (p-z+p2h

(2.12)
= Weyl-ordered (f(a,a'))
with the Fourier transform f(p,p) of f given by
Fon) = [4 12,0 @000, (213)

The term “Weyl-ordered” in the definition above denotes the linear operation that maps
any monomial in operators to its symmetrized expression, such that, for example, af a?
gets mapped to Weyl-ordered (aT 2) = 3(aT a’+aa'a + a*a’). In this context F o=
F(a',a) is called the symbol or Weyl-symbol of f. The Moyal-Weyl map thus promotes
functions of coordinates multiplied by the star-product to operators on the Hilbert space
‘H with the usual operator composition as product. As a side remark let us mention that
apart from the Weyl-ordering introduced above there exist also other possible ordering
prescriptions to assign unique operator expressions to classical functions. These are in-
duced by allowing for a weight function w(p, p) in the integrand of ([ZI2) (see e.g. [T10]
for a review on this topic). Note also that the normalization in (2I2)) is chosen such that
1~ 1.
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To recover the configuration space function f from an operator F we need to employ
the inverse mapping to (ZI2) which is given by

P f(2,2) = () PEO) (588 i (B o trsird i)
(2.14)

where F, derives from F by replacing the composition by the star-product and Pf(6)
denotes the Pfaffian of the noncommutativity tensor 6 which for positive determinant is
given by v/det 6 and otherwise defined as, for example, in [70]. Furthermore, the symbol
Try is used here to denote the trace over the Hilbert space.

We thus have a bijection of the form
(fz2)%) —  (F@a),) (2.15)

allowing us to investigate problems on #-deformed real space via its equivalent formulation
in the operator formalism introduced here.

Derivative and integral

In order to properly analyze field theories in the operator formalism it is still necessary to
introduce analogues of derivatives and integration on the level of operators. The Moyal-
Weyl map (ZI12) enables us to state the following transformations under the transition
between star-product and operator formalism:

0. f — A [aF] and 0.f — -k [a'lF], (2.16)
as well as
d= 1d
/%f —  (27m)?PE(0) Try(F). (2.17)
i

Furthermore, we may introduce the hermitian Laplace operator —A which is defined
via
AF = [a, [aT,FH = [aT, [a, F“ ) (2.18)
Its kernel is spanned by functions of a or a' only.

Summarizing, we get the following dictionary for the transition between star-product
and operator formulation on the #-deformed real space mediated by the Moyal-Weyl map:

star-product operator
coordinates z', 27 o V20, 4T, \/20; a0 operators
derivatives 0;,, 0. — \/%01- ad(a’), ——% 7 ad(a’") commutators
integral % — (2m)4 PE(0) Try trace.

Note that instead of d‘(iji()ijz we will also make use of the more convenient notation d?% to

denote the same thing.
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Coherent states and some unitary transformations

In addition to the aforementioned harmonic oscillator states, there exists another special
class of states in Hyo which merit our attention. These, so-called coherent states play an
important role in our discussion of the noncommutative sigma model on the operator level
and thus deserve a thorough inspection. To this end, we collect some of the basic facts
about them as far as needed for the analysis in this thesis. A more detailed discussion can,
for example, be found in [99]. In addition, some special unitary operators are presented
which induce translations and rotations in the complex plane underlying the Hilbert space
spanned by the coherent states.

In the single harmonic oscillator Fock space Huo the coherent states |a) are defined
as eigenstates of the annihilation operator a with eigenvalue o € C and can be written
as linear combination of basis states

<k
o at Loa aat—aa
la) = — |k) = e*" ]0) = e29" %" 7¥1]0). (2.19)
= VM

Note that this definition is chosen such that |«) is not normalized to unity but rather
(alo/) = 3, (2.20)
i.e., (a|a) = exp(aa). From the formula (ZT9) the action of the creation and annihilation
operators on |a) can be deduced yielding in summary
aal
1)

= 5l (2.21)

ala) = ala) and a'la) = e

Furthermore, the coherent states (22I9) form an overcomplete basis of Hyo with sep-
aration of unity

2m

i— / doda s |y (al. (2.22)

Of special interest in the context of coherent states and its role in noncommutative field
theory will be the transformation of coherent states under the unitary transformations
mediating translations and rotations in the complex plane.

For the first of these, define the shift operator D() for some 5 € C by

D) = P — DBl DI(B) = al -5, (2.23)
from which we find that D(8) indeed translates coherent states as
D(B)|a) = ¢ P39 o 4 ). (2.24)
Rotations of coherent states by some real angle 1), on the other hand, are induced by

RW) = ¥ —  RE@)a RIW) = ?al (2.25)
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such that

R() o) = | ). (2.26)

Another unitary transformation needed later is the squeezing or Bogoliubov transfor-
mation, given for some complex parameter 3 by

$(8) = caBa-pa) (2.27)
which implies
S(B)at §T(B) = af cosh(|A)) |—g| + @ sinh(|3]) %. (2.28)






CHAPTER 3

WARD MODEL AND NONCOMMUTATIVE
EXTENSION

A predominant aim in field theory is to find nontrivial solutions to the equations of
motion for some given model. Unfortunately, the equations arising in realistic models
are usually highly nonlinear and solving them in full generality is often an infeasible
task. It is therefore natural to look for possible simplifications which might allow for
finding at least subclasses of solutions. In many cases, this is indeed possible and there
exist some particularly rewarding situations where the considered solutions also have
an interpretation in terms of topological quantities. We will elucidate this idea in the
following sections where we will consider primarily solitonic solutions, or solitons for
short, which, for our purposes, are defined as finite-energy solutions to a minkowskian
field theory usually arising from some topological argument,

Still the complete classification of these nonperturbative solutions may well be an
arduous, if not impossible, task. Therefore, one might consider other routes for simplifying
the posed problem. Along these lines huge efforts have been invested into the study of
lower dimensional models descended from or similar to interesting higher dimensional
models in the hope that these may be more easily tractable. When one seeks to understand
realistic field theories by means of these lower dimensional models one would usually
require these to preserve as many of the features the higher dimensional model possesses
as possible. Since in this thesis we are primarily interested in classical field theories the
key featﬁure we want to keep is the existence of nontrivial solutions to the equations of
motion.

Combining the two mentioned tracks, we are thus set out to analyze solitonic solu-
tions to a particular low dimensional field theoretical model, the so-called Ward chiral
or nonlinear sigma model, and its extension to the noncommutative realm. After briefly
reviewing the commutative setting we proceed to the noncommutative case clarifying also
the relation of the noncommutative Ward model to noncommutative scalar field theories.

Before going into detail let us present some references for background reading. The
analysis of nonperturbative nontrivial field configurations in general is an old subject in
field theory and there exists a fair amount of literature on it. For a good overview on
the topic of solitons and instantons in the commutative setting and in particular for the

1Strictly speaking this condition rather defines what is known as “solitary waves”, instead of “solitons”,
since the latter phrase often refers to a more stringent definition as, for example, in [T03]. Yet, we will not
make this somewhat subtle discrimination here and thus adhere to common practice in physics literature.

2Even though there exist, of course, other reasonable features as e.g. conformal invariance of the
action, asymptotic freedom or confinement of fermions upon introducing them [I33].
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nonlinear sigma model presented here, we suggest the books [I03, 33, 86]. More recently,
stimulated by the advances in the area of noncommutative field theory, nonperturbative
solutions received a lot of attention in the noncommutative setting, as well. For general
references on the topic of noncommutative solitons and instantons we refer the reader to
[42, @7, 94, b3, 49, [75], [76] and references therein.

3.1 LOW DIMENSIONAL SIGMA MODELS

The models of primary interest to us are the (non-)linear sigma models, scalar field the-
ories on (1+d)-dimensional flat spacetime with field taking values in a riemannian target
manifold and defined by a lagrangian action of the form

S[®] = /d1+d:c (3 Gy 0,2 0"d" — V(D)) , (3.1)

where G denotes the metric on the target space and V' is some potential. The notation
“(non-)linear” refers to the form of the metric and a model is usually called nonlinear if
the components of G depend on the field ® itself.

One of the most prominent examples of a nonlinear sigma model is the well understood
O(n) sigma model as first introduced by Gell-Mann and Levy [40] where the fields are
given by n-component real unit vectors and the lagrangian density simply reads £ =
0,0%0"®?. A direct generalization of the Lagrangian is achieved by allowing a group
target manifold, e.g. for U(n)-valued fields, yielding the unitary sigma or chiral model
with £ = Trd,®" 9*®. Obviously these models enjoy a global O(n) or U(n) symmetry,
respectively, to which their names refer. Of particular importance for later applications
will be the restriction of the chiral model to hermitian fields ®' = ® which allows us to
put ® = 1 — 2P with a hermitian projector P of some rank r. The projector P itself
parametrizes subspaces of the full configuration space with dimension given by its rank.
The set of all projectors unitarily equivalent to P, and thus of same rank, is called the
Grassmannian, and it is given by the cose

U(n)
U(im P) x U(ker P)’

where U(X) := {U € GL(X)|U = U} denotes the set of all unitary linear transforma-
tions on X. Therefore, each given P, and thus each hermitian ®, belongs to a certain
Grassmannian, and the space of all hermitian ® decomposes into a disjoint union of Grass-
mannians. The restriction to hermitian ® reduces the unitary to a grassmannian sigma
model, whose configuration space is parametrized by projectors P. Finally, if we consider
only projectors of rank 1 we are left with the so-called CP"~! models [30, 4T, BT, 133]
which are subject of extensive studies of their own. There is much more to be said about
these models and their properties but we will not do so in this thesis and rather con-
centrate on general features and the specific setup which will be introduced in the next
section.

Gr(P) =

(3.2)

3In the literature one usually encounters the notation Gr(k,n) for the set of all k-complex-dimensional
subspaces of C™.
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3.1.1 Derrick’s Theorem

The models introduced above seem easy enough to give explicit solutions, at least in
low dimensions, and thus serve as toy examples for features of more realistic higher-
dimensional models. Nevertheless, these models do not feature nontrivial solutions in
arbitrary dimensions. The restrictions on the number of allowed dimensions for nontrivial
solutions to exist are due a famous theorem by Derrick [55), 22] which states that under
certain assumptions there cannot exist any other static finite-energy solutions than the
vacuum itself. Let us follow the lines of [86] as well as Derrick’s original paper and go
into a little more detail. To this end consider again an action of the form (Bl), where,
for simplicity, we assume ® to be scalar. Static solutions ® need to extremize the energy
functional

E[®] = / Az (L0.D0D + V(3)) = E[®) + Eofd], (3.3)

where 7,5 € {1,2,...,d}, implying that it should in particular be stationary under spatial
rescaling ®(z) — ®(Az). The energy transforms under this rescaling as

E[®] — A\7TUE)[P] + N TUE[®] =: E,, (3.4)

thus accounting for the choice of terminology above. Stationarity of the energy leads us
to the condition
dA |4 d

Hence we see that the behavior of the energy depends crucially on the number of spatial
dimensions. Generically the kinetic energy FE, and the potential energy FE, are both
positive and therefore (BH) can only hold for d = 1 whereas for d > 2 it is violated.
The case d = 2 poses an exception insofar as there it is still possible to consider the
situation of vanishing potential which might still allow for solutions. Another way to
evade this theorem in scalar field theories is to include additional terms with higher order
derivatives or higher powers of the derivatives in the Lagrangian and thus also change
the corresponding energy in a way which allows for solutions even in the case of higher
dimensions

One important implication due to the introduction of a length-scale v/@ via the star-
product (7)) is that in this noncommutative setting the scaling argument used to prove
the above theorem is generically no longer valid [26]. Therefore static finite-energy so-
lutions can and do exist even in higher dimensions (see [43] for the example of d = 2
with nonzero potential). For V' = 0, however, the energy reduces to the commutative
expression ([B3)) due to the property () and Derrick’s theorem does still apply.

It is also worthwhile mentioning that besides the negative non-existence result dis-
cussed above we can also put this theorem to some constructive use by realizing that the

4 Apart from this, the introduction of gauge fields circumvents the obstructions of this theorem by a
different scaling behavior.
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compulsory invariance of the energy under spatial rescaling implies a relation between the
different parts of the energy usually referred to as virial theorem [I03, 86]. In d = 1, for
example, the condition ([B3) yields Fy = Ey and the energy of a solution is thus evenly
split between kinetic and potential contribution.

3.1.2 Integrability

Eventually, one would also like to analyze time-dependent solutions to the respective
model at hand. An important question arising in this context of classifying solutions to
a given model is whether it is possible to completely solve the equations of motions or, in
other words, whether the model is integrable. In field theory, the term integrability usually
refers to the existence of an infinite number of conservation laws,ﬁ which, for a wide class
of models, is intrinsically tied to the existence of a so-called Lax-pair formulation [T}, T3T],
where the equations of motions arise as compatibility condition of a set of equations for
an auxiliary field. To exemplify this statement, let us briefly consider [I33]| as a simple
(141)-dimensional case the Korteweg-de Vries equation on the real line. The equation of
motion is given by

0q+aqdq+02qg = 0 withaeC.

Introduce the linear operators |23, [95]

0
L::—<8§+gq), A= — 48§+aqam+g—q+f ,
6 2 Ox

where f is an arbitrary function depending on ¢ and an additional variable k. Calculating
the compatibility condition to the set of equations

Y

LY = kKU, v _ AT,

ot

for some auxiliary field U(¢, z, k) and a0 gives
oL+ [L,A] =0,

which upon inserting the definitions of L and A, the so-called Lax pair, reproduces the
original equation of motion for the field g. We have thus rewritten the equation of motion
as a compatibility condition to a set of linear equation, the linear system to this model.
In view of the connection between the existence of a Lax pair and integrability mentioned
above, we will adopt common practice and call a model integrable whenever there exist
such a Lax-pair formulation. Besides the Korteweg-de Vries equation, there are a lot of
important integrable systems in this sense. For example, the nonlinear sigma model in 2
dimensions, i.e. d = 1, is known to be integrable [I33]. Due to the existence of powerful

SFor a mathematically more rigorous definition of integrability one needs to employ a little more
subtlety (see e.g. [R7]) from which we will refrain in this framework and be content with the following
Lax-pair condition.
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techniques for generating and studying solutions entailed by integrability, it is very useful
to retain this feature as we will see during the subsequent analysis.

Now that we presented the necessary preliminaries let us be more specific and intro-
duce the model that will be at the center of our attention in the following chapters. The
main aim in this context will be to define a model which features nontrivial static and also
interacting time-dependent solutions to the equation of motion and at the same time ex-
hibits integrability. Since we are eventually interested in noncommutative generalizations
of the model we focus on two spatial dimensions in order to be then able to Moyal-deform
the spatial coordinates.

3.2 MODIFIED NONLINEAR SIGMA MODEL AND NONCOMMUTATIVE
EXTENSION

In the previous section we reviewed well known results on general low dimensional sigma
models emphasizing the role of the existence of interesting static solutions and integrability
of the models. Upon further pursuing this quest of finding integrable models featuring
nontrivial field configurations one is naturally led to the question whether there exist such
models in (1+4d)-dimensional minkowskian spacetime which are also Lorentz-invariant,
i.e. invariant under the action of the group SO(1,d). This question can be answered to
the positive for d = 1, where models of this type have been found (see e.g. [I31] and
references therein for a review). In contrast to this, there are no known models in 142
dimensions comprising simultaneously the features of integrability, Lorentz-invariance and
the existence of interacting soliton solutions [79, 27]. Even though there do exists examples
of models which are integrable in more than one space dimension, these usually feature
only non-moving or trivially scattering soliton solutions and thus no interesting time
evolution with respect to interaction of solitons (see e.g. [TT1), T21] for a brief exposition).
H On the other hand models exhibiting soliton scattering in 142 dimensions have been
introduced and investigated (see e.g. [T00, [TOT, 64, M02]) but these were found not to be
integrable.

However, there exists a model which comes, in a sense, close to achieving the above
set, goal by providing a system which is integrable but explicitly breaks Lorentz-invariance
through an additional term in the Lagrangian compared to (Bl). Even though Lorentz-
invariance is broken, this model is nevertheless very interesting since it provides an in-
tegrable theory with moving and scattering soliton solutions in 142 dimensions. It is
therefore that this model has experienced a thorough analysis since its introduction by
Ward [I19] nearly 20 years ago and is still subject of current research [60), 27, [61].

6The Kadomtsev-Petviashvili equation poses an exception since interacting solutions have been found
in this model (see [T] and references therein).
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3.2.1 Ward’s chiral model

To arrive at a modified sigma model in 142 dimensions we may start with the U(n)
chiral model in two spatial dimensions and extend it to an additional time dimension.
Even though there exist diverse ways of doing this, only a very specific modification leads
to an integrable modified sigma model, the so-called Ward model. The modification to
the standard sigma-model action needed for this Ward model is originally due to Wess,
Zumino and Witten [123, 126] who introduced the appearing WZW-term for a rather
different purpose (see also [I33]). As mentioned above its equations of motion have been
introduced and thoroughly investigated by Ward in the context of the SU(2) chiral model
[TT9, [79, M20, £9]. For this reason the model is also known as Ward’s chiral model.

One way of deriving the field equations for this modified U(n) sigma model is by
a dimensional reduction of the selfdual Yang-Mills theory from 2+2 to 1+2 dimensions
73, 86l 68]. The latter is implied by the Bogomolnyi equations

0, + [A H] = e, (A + [, A)]) (36)

where the Yang-Mills gauge potential A, and the Higgs field I/ take values in the Lie-
algebra u(n) of U(n). Here, u,v, A € {0,1,2} are used to denote the coordinates {¢,z,y}
in R"? with metric (1,,) = diag(—1,+1,+1) and the Levi-Civita tensor is defined with
€92 — 1. Furthermore, the square brackets, as usual, denote antisymmetrization with
respect to the indices, i.e. Ay, B,) = A,B, — A,B,. Choosing the light-cone gauge A, =
—H, A, = A, and introducing a group valued prepotential ® € U(n) with ansatz

leads to the following Yang-type [130] equation for the prepotential ®:
(77“1/ + X\ EAW) au@)T &,CI)) = ax(q)T 833(1)) + a?rt@)T aertq)) =0 (3-8)

with fixed one-form X = X, dz* = dx responsible for the breaking of Lorentz-invariance.
Equation (B¥) is just the advertised equation of motion for the Ward model and will
therefore play a paramount role in the following discussions.

There exists another way to arrive at the modified U(n) sigma model in 142 dimensions
which allows us to derive the equation of motion from an action principle. For this one
considers a Nair-Shiff sigma model-type action [91), 82] and dimensionally reduces it from
four to three dimensions (see also [73]). The ensuing model is again the non-Lorentz
invariant but possibly integrable modified sigma model with U(n) valued field and action

1
S[®] = —%/trj/\*JJr%//trX/\J/\JAJ
0

= SQ + Sg,

where the antihermitian flat gauge connection .J is defined by

(3.9)

J = o'do = F:=dJ+JAJ =0, (3.10)
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and the Hodge-dual is, as usual, given as
xJ 1= %EW,\ Jr Az A da?. (3.11)

Finally, the symbol “tr” is used to denote the trace over the U(n) group space. The
two parts of this action may be identified as the standard sigma model term S, plus
an additional Wess-Zumino-Witten-type (WZW) term S; consisting of an mtegral over
R'2 x [0,1], with the extension .J interpolating along the interval [0,1] between J = 0
and J = J. Furthermore, there appears the generically Lorentz-breaking constant one-
form X, which will be kept arbitrary again for the moment and will eventually render the
model integrable for special choices of X.

Expanding the gauge connection in terms of the fields and employing coordinates
(x#) == (t,x,y), p € {0,1,2}, (%) := (t,x,y,p), a € {0,1,2,3}, we get the explicit form

S@] = -1 / dtdzdy tr " 0,®' 0,®
1 (3.12)
+ 3 / dtdzdy / dp X, e2%d tr (&ﬂ 0,® dF 9P ot adé) ,
0
where the totally antisymmetric tensor in 1+3 dimensions is defined with £%123 := 1.

If we now vary the action with respect to ® we need to take into account the unitarity
of the fields which is to be conserved under perturbations. A convenient way of doing this
is to perturb

> — P =P (1+ix—3ix*+0OKY), (3.13)

for some hermitian field x. The variation of the action (BI2) is then straightforwardly
computed to

d0S[®,x] = —1i /dtdxdy tr {(n™ + X, ™) 9,(270,2)} x
+ /dtdxdy trx {100, + ®'0"® 9, — X, " d10,80,} x (3.14)

+ 1 /dtdxdy troy { (" + X\ eM) 0,(270,2)} x + O(x*) .

To make contact to the commonly considered perturbations of the form & — & + ¢ for
some small ¢, we infer from (BI3)

o = 1idxy—10*+0(x*) — X = 10T+ 0T pdTo + O(4%), (3.15)

and thus find for the variation of the action in terms of this perturbation

dS[®, 9] = — /dtdxdy tr {(n" + X, ™) 9,(219,2) '} ¢
+ / dtdzdy tr ¢' {1 0", — 1 (0"0,®) ®' — X, e 0,8 (0,9T + @7 9,)} ¢

+O(¢?). (3.16)
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The unitarity condition provides in this case a constraint on the perturbation ¢ and its
hermitian conjugate:

@+ ) (@+¢) = 1 = ¢ = —d'¢pd +dTpdigd + O, (3.17)

which allows us to express ¢' in the variation by ¢ up to arbitrary order and thus gives
a contribution to the second order variation of S from the term of first order in ¢'.
Mathematically speaking, to compute the variation to second order in the perturbation it
is not sufficient to consider perturbations in the tangent space ¢ € TeU(n) but rather one
needs to include the leading correction stemming from the exponential map onto U(n)
[24] as can be more explicitly seen from the first way of perturbing.

From either one of these variations the equation of motion for Ward’s chiral model is
read off as

("™ 4+ X\ eM)0,(®10,®) = 0,('9,®) + 9, +(®'9,,®) = 0, (3.18)
which is just the same as in ([B). Furthermore, we may subject the field to a general
coordinate transformation 6® = &#(z) 9, leading to a change of the action by

5S = / tr (dtdady 0WE) Ty + X(E) IANTNJ) (3.19)

where § = {#0,,. Writing J = J,dz*, yields the standard energy-momentum tensor
T = tr(Judy — 2000, Js) - (3.20)

For a choice of X with X (0;), the action is invariant under time translations and thus the
energy functional

Bo] = 35 /dxdy tr (0,2'0,® + 9,279, ® + 0,019, P) . (3.21)

is conserved [IT9)]. It is also known that the model defined by (B3) is integrable in the
sense of possessing a Lax-pair formulation if and only if X meets the above requirement
X (0;) [34, TIR, 57 (see also chapter B). To retain this integrability we will from now on
only consider the case with

X :=dzr < (X, = (0,1,0,0), (3.22)

which yields the original Ward chiral model and leaves the y- and ¢-translations unbroken [l
Furthermore, this choice of X breaks the Lorentz group SO(1,2) down to the linear group
GL(1,R) generated by boosts in y-direction.

We conclude this account of the commutative Ward model by noticing that for static
solutions living on some Grassmannian, i.e. ' = ® we may rewrite the energy functional

B21) to
E[P] = 2 /dxdy tro;,PO'P = 8 /d22 tro,Po:P, (3.23)

"Under z-translations, S ~ [ JAJAJ = 24w%n with n € 73(U(n)) = Z, where 75 denotes the third
homotopy group [92].
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where the field has been parametrized by a projector P = P2 = P via ® = 1 — 2 P (see
also section BJl). Exploiting the cyclicity of the trace, we derive the decomposition
E =14 /d2z tr{0,PPO:P+ P0,PO-PP+0-P0,P+ P0;0,P P}
(3.24)
= 4/d2zu~{FFT+GGT} :

with the convenient abbreviations

F = (0:P) PG = (0.P)P. (3.25)
Upon closer inspection we find using P (0P) P = 0 that

E = 8/d22 tr P{0;PO.P — 0,P 0P} + 16/d22 tr 1 (3.26)
and by similar reasoning

E = —8/d22 tr P{0:P0.P — 0.P 0.P} + 16/d22 trG GT, (3.27)

from which it follows that the energy of static hermitian solutions is bounded from below
by a BPS bound as

Q = /dzz tr P{O:P0,P — 0.P0:P} with E>|Q]|. (3.28)

The appearing topological charge Q admits [T0] a geometrical interpretation] and the
BPS or Bogomolnyi bound (B28)) is saturated for configurations satisfying either

F = (0:P)P = (1—-P)0:P = 0 (BPS-equation)
or G = (0,P)P = (1-P)0,P = 0 (anti-BPS-equation).

These solutions define what we will henceforth call solitons and anti-solitons, respectively,
and it is them that our discussion will focus on in the following since they provide inter-
esting configurations with topological origin. In order to see that solutions to (B.29) are
indeed also solutions to the Ward model equation of motion (BIX]), we rewrite the latter
for static hermitian configurations in terms of the projector as

O:FT —0,F = 0 = 0.G" - 0:G. (3.30)

(3.29)

Finally, note also that in this commutative setting solitons will only arise for non-
abelian group spaces like e.g. U(n), SU(n) or O(n) all with n > 1 since otherwise @ = 0.

A wide variety of soliton solutions to the model just presented or rather to its SU(n)
descendant are known and their properties seem quite well understood [I18, 19, [79, 15,
120l 64, 111, 127, 57, bR, B, B9, 60, 27, 6T]. We will in later sections refer to specific
results in order to compare them to the analysis in the noncommutative setting but
for now refrain from giving a more lengthy exposition of these and instead continue by
extending the model to the noncommutative case. The interested reader may consult the
literature mentioned above for detailed treatments of further issues in this commutative
setting.

8In fact, @ is an element of m2(Gr P) = Z.
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3.2.2 Noncommutative extension of the Ward model

Let us now proceed to the noncommutative extension of the (1+2)-dimensional Ward
model which results from Moyal-deforming the Wess-Zumino-Witten-modified integrable
sigma model action discussed in the last subsection. The base space for our model is
thus exchanged from R into R x R2 with the metric kept fixed. Properties and solu-
tions of this model have been subject to intensive study during the last couple of years
2, 173, 74, O, 127, b6, 75, [76] leading to a good understanding of this model as one of
the rare showcases for noncommutative integrable models in 1+2 dimensions. In this
subsection, we start by presenting the model itself, its equations of motions and some
elementary properties before extending the scope to solutions and their properties in the
next sections. We will also postpone an account of the topological properties arising in
the noncommutative setting like the BPS bound or the topological charge until then. A
recent discussion of some of this material is also given in the diploma thesis [68]. For
the subsequent applications we present the results in the star-product as well as in the
operator formulation where necessary for later considerations.

Noncommutative Ward model in star-product formulation

To shift the model introduced in section B2l to the noncommutative realm in the star-
product formalism as introduced via the Groenewold-Moyal product in section E22 we
consider U, (n) valued fields ®, where the ordinary group-, i.e. matrix-, multiplication is
modified by changing the multiplication of matrix elements to the star-product of the
Moyal plane. The field thus satisfies

D x Pl = (Z@ik*¢2j> =1, = ®'« D, (3.31)
k=1

ij=l..n

where 1,, denotes here the nxn unit matrix. In analogy to the commutative case we then
define the noncommutative nonlinear sigma model action by

S| = —3 /dtdxdy trn” 9,01 x 0,

1 (3.32)

+ % /dtdxdy/ dp X, 2% tr (CTDT * 0@ * B % 9,0 « Bf * 8d<f>> ,
0

where the Lorentz-breaking constant one-form X is again chosen as in (8:22)), rendering
the model, similar to the commutative case, integrable at the cost of losing Lorentz
invariance. In addition the Lorentz group is independently broken down to the rotations
in the z—y-plane by the introduction of the star product such that in total there is nothing
left of the Lorentz invariance of this model. Nevertheless, it is still invariant under y- and
t-translations and thus the conservation of the energy functional

@) = 1 / dady tr (' + 0D + 0,01 % 0,® + 0,0 0, D)
(3.33)
= %/dzz tr (0,01 5,® + 40,01 ;)
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also pertains to the noncommutative case [67]. Furthermore, the existence of a Lax-pair
formulation [73] as in the commutative setting with product replaced by the star-product
explicitly shows that the integrability of this model is not impeded by the introduction of
noncommutativity (see also section EITI).

Finally, the equation of motion under the usual assumption of vanishing boundary
terms is given by

(" + X, ) 0,(PT x0,8) = 0,(®" %0, @) + 0, _+(®T % 9,1, P) = 0. (3.34)

Noncommutative Ward model in operator formalism

Now switching to the operator formalism as introduced in section 2222 the U, (n) valued
fields ® descend to unitary nxn matrices with operator-valued entried], i.e. & € U(H®") =
U(C"®H), where H = Hpo is the 1-dimensional harmonic oscillator Fock space, and are
thus subject to the constraint

PPN = P = 1, @1y = 1. (3.35)

In this setting the corresponding expressions for the noncommutative action ([B32) and

energy (B33)) read:

S[@] = / at Tr (00,80, + [0, '] [af,®] + [, B [0, ®])
1 (3.36)
inV20 / dat / QT (37 00 [ 0,86 [atal, 3]
0
and
Ele] = « T{00,9'0,0 + [0,0]" [0, @] + [of, @] [a", 0] },
= 7 {09,010 + A0t o + @f Ad}, (3.37)

— 70]0,8|° + 27| [a, ®] [,

where |A|? := Tr(A"A) denotes the squared Hilbert-Schmidt norm of U(n)-valued opera-
tors on H and Tr denotes the double trace over the U(n) group space as well as over the
Hilbert space H. Furthermore, the equation of motion (B34) is now given by

00,'0,2) + o' A® — AT ® 11,/2 ([ata!, 7|00 — 9T [atal, ®]) = 0. (3.38)

A remark on the admissible classes of operators seems in order here. Since we only
take into account configurations of finite energy, we have to demand that the two terms
in the last line of (B37) are finite and hence, that 0,® as well as [a, ®| are Hilbert-
Schmidt operators, i.e. their Hilbert-Schmidt norm is finite. Furthermore, we only consider

9Note again that we refrain from indicating operators by a different symbol since the operator picture
will from now on be our preferred point of view.
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solutions for which A®, 9?® are trace-class and ® is a bounded operatm@ in order for
the other expressions in (B37) to be well defined. As we will shortly see, imposing more
stringent requirements on the allowed operators may facilitate the analysis of solutions to
the field equations (B:37) and we will do so if deemed appropriate but otherwise stick to
this minimalistic choice.

Symmetries of the action

For the following discussion of solutions to the equations of motion ([B34)), [B38) it is
advisable to analyze symmetries of the action since these yield configurations of equal
action and hence additional solutions capturing moduli of the configurations under con-
sideration. We will therefore now briefly summarize obvious symmetries of the action
(B36) in operator formalism postponing a detailed discussion of the moduli space to later
sections.

First realize that the annihilation and creation operators above should be read as 1,,®a
and 1, ® af, respectively, such that the model enjoys a global U(1) x SU(n) x SU(n)
invariance under

d — (VRIy)PW®eI1y) with VW =1,=WW", (3.39)
which generates a moduli space to any nontrivial solution of (B38).

Another symmetry, at least of the energy (B31), is induced by the 1SO(2) euclidean

group transformations of the noncommutative plane, as generated by the adjoint action
of a, a’ and N. Specifically, a global translation of the noncommutative plane,

(2,2) — (24¢, 24+ = V20 (a+a,ad +a), (3.40)
induces on operator-valued scalar functions f the unitary operation
f N efcaz*&?zf — eaa,d(aT)fdad(a)f — eaanazafefaaTJro?a
(3.41)
=: D(a) fD(a)',
where the shift operator D is the same as defined in (Z2Z3). On the other hand a global
rotation of the noncommutative plane,

(z,2) — (72, e72) = V20 (eVa, e al) | (3.42)
induces the unitary transformation
f _ eiﬁad(aTa)f _ eiﬁaTafe—iﬁaTa = R(,&)fn(,ﬁ)f (343)

for ¥ € R/2n7Z, because [N, f] = z0:f — 0. f z.

Since the adjoint actions of both D and R commute with that of A, the energy
functional (B37) is invariant under them. Furthermore, since the adjoint action of D
also commutes with ad(a) and ad(a'), all translates of a solution to (B38) also qualify as
solutions, with equal energy and action. In addition the same holds true for rotated static
solutions since they experience no change in the action due to the rotation. However,
other unitary transformations, and in particular rotations of time-dependent solutions,
will in general change the value of S.

10As a short reminder: trace-class means of finite trace, whereas for a bounded operator A we have
|A|T)|* < ¢||®)|* with some fixed ¢ € R for all |¥) € H.
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3.3 RELATION TO NONCOMMUTATIVE SCALAR FIELD THEORY

Before now delving into the explicit construction of solutions to the noncommutative
Ward model we will in this section show that the discussed noncommutative extension of
this model is intimately connected to noncommutative scalar field theory allowing us to
transfer results obtained in the setting just described to these kind of models which have
been a lively area of research since the beginning of this century. This connection, which
also holds in the commutative case, is just the manifestation of the fact that to embed
a possibly curved group manifold into some euclidean space, we have to implement the
constraint to live on this manifold in a scalar field theory via a Lagrange multiplier.

Let us follow the lines of [67] to make this explicit and begin with a rather generic
action Sy of a real scalar field ® living on the Moyal plane with complex coordinates (z, z)
and depending on time ¢,

Sp[®] = /dt d*z (% 0P *x 0P — 0,9 % 0:P — V*(Q)) ) (3.44)

where the subscript on the potential signifies star-product multiplication again. The
associated equation of motion reads

O — V/(®) = 0. (3.45)

Various types of this scalar model have been investigated in recent literature, e.g. in
[42, @4, 135, 8T, M08, 88, 28, 80, @3, 48, &, M09, 29, 98], yielding mainly approximate
results for infinite noncommutativity parameter # under some assumptions on the general
form of the potential. To make contact between these papers and the model analyzed
here, we further specify V to be nonnegative with minimum 0 at &, and assume V"’ to be
polynomial, i.e.

V(@) >0, V(®) =0 and V'(®) = v ][[(@- ;). (3.46)
Static classical configurations ® extremize the corresponding energy functional
Ey[®] = /sz (0,P % 0:D + V(D)) , (3.47)

which for large values of # is dominated by the potential term, because z = (’)(\/@)
Expanding around 6 = oo, one obtains an expansion for the solution [43]

1
Dy = c1><°>+§<1><1>+... with @ = N ¢, P, ¢ €C, (3.48)

where {P;} is an arbitrary orthogonal resolution of the star-algebra identity,
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Therefore ®©) solves ([I4H) for infinite value of §. Note that for ®® to be a solution it is
necessary that the collection {P;} appearing in (B8] is complete, i.e. satisfies the second
equation of ([49). If it were not, V/(®©®)) £ 0 in general.

For later use we also introduce the rank k; of the projector P, vial]

d f N
/%Pi = k;, fork; €Ny. (3.50)
Since ®) and all further terms in the expansion are determined by ®(© [43], any classical
solution is fixed by an assignment of projectors P; to the extrema ®; of the potential.
This appearance of projectors parametrizing possible solutions is a recurring theme and
will be most prominent in the discussion of the abelian noncommutative grassmannian
sigma model as we shall see in section LIl Now, restricting ourselves to stable solutions,
we always associate the zero projector, which is admissible, to the local maxima of V.
The expansion of the classical energy reads

1
Eyl®a] = 0Ey+Ei+ 5By +... with Eo = 27 > ki V() (3.51)

and
B = / d?20.00 % 9:00 = 3" ¢; ¢; / d?2 0, P, x 0 P; . (3.52)

4,J

Any complete collection {F;} thus extremizes Fy at leading order in 6. Beyond this,
however, FE; lifts this infinite degeneracy: its extremization selects a finite-dimensional
class of identity resolutions.

To exemplify what was just described we follow the paper [43], where an asymmetric
double-well potential with local minima V(0) = 0 and V(A) > 0 for some A € R was
chosen. The authors assigned

P o ®=Xad 1-P < & =0, (3.53)

which led to the asymptotic solution
O = AP with E, = 27kV()\) and E; = )2 /d22 0. P|*. (3.54)
Instead of this asymmetric potential we now consider the symmetric double-well potential

V(@) = B(@+P—1)2 witheR, (3.55)

where the square is also implied to be taken with the star-product. It follows that V] (®) =
43 (D4 1)+ D * (P — 1) and we associate

P < ®=-1 and 1-P < & = 41, (3.56)

"This definition is justified by the transition to the operator formulation, where [d?z — 2760 Try
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which implies a solution
O = 1-2P, aswellas Ey = 0 and FE; = 4/d22|82P|2, (3.57)

as above. It is easy to see that all higher corrections, i.e. ®), F, etc., come with negative
powers of 3. Therefore, we have the exact result

dg — 09 and Edy — F (3.58)

in the limit of infinite stiffness, 5 — oo, and there is no effective potential on the moduli
space. This limit nails the value of ® to —1 (in im P) or to +1 (in ker P).

Note that these classical configurations are idempotent, i.e. ®© x ®© = 1. This
idempotency has another perspective since idempotent fields also appear in the unitary
sigma model discussed in section Bl where they define grassmannian submanifolds of the
defining group via P = 1(1 — ®). The simplest example in this respect is the U(1) model
with complex unimodular field ®. The theory, originally considered in the commutative
case, where it is free, becomes interacting when being Moyal-deformed. Its two grass-
mannian submanifolds correspond precisely to the two idempotent values above, namely
® = +1. Hence, if we extend our double-well model to a Mexican-hat model for complex
®, the stiff limit will yield the constraint ®' x ® = 1, defining the U, (1) sigma model,
and our trial configurations ®© for P of rank k parametrize precisely the Grassmannian
Gr(k, H), the coset of all unitary transformations on H modulo the product space of
those transformations in im P or ker P (see also (E6)). The only modification owed to
the extension described is a factor of two in the energy functional which, for k < oo, can
be manipulated to

E, = 8/012,2«|8ZP|2 = 87k + 16 /d22|(1—P)*azP|2 > 8k, (3.59)

revealing the Bogomolnyi bound already encountered in B2l

These considerations explicitly show the close connection between scalar field theory
on the one side and the nonlinear sigma model on the other hand which derives from
the implementation of the sigma-model constraint as a Lagrange multiplier. In order
to comprise both into our discussion as far as possible we are thus led to the idea of
considering a whole family of noncommutative sigma models with action

S,[®] = So[®@] + v .S5[®], (3.60)

where the constituents S, and S; are given by the noncommutative version of the expres-
sions in (BY) and the fields are taken to be U,(1)- or more generally U,(n)-valued. By
varying vy, we thus get a family of actions connecting the ordinary sigma model at v =0
to the Ward model at v = 1, both based on U,(n). In the static situation S3 vanishes and
the ordinary sigma model is equivalent to the Ward model. This connection will give us
important information in the context of the adiabatic approach considered in chapter [1

Finally we would like to mention that apart from the analysis of noncommutative
scalar field theories huge efforts have simultaneously been made to also understand other
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noncommutative theories. As an example, the noncommutative CP"™ model has recently
come under scrutiny [[77, B7, B8, B2, 00, 96, 97| with one result being that the equivalence
between the U(2) chiral model and the CP! model, known to exist for the commutative
setting, is lost in the noncommutative case [97], thus showing that the investigation of
noncommutative extensions to known models may offer new features of otherwise well
understood issues.



CHAPTER 4

STATIC SOLUTIONS TO THE NONCOMMUTATIVE
SIGMA MODEL

After having introduced the noncommutative Ward model in the preceding chapter
we now address the solutions to this model concentrating, for the time being, solely on
static solutions. Time-dependent solutions will be discussed later on in chapter @ Most
of the material presented here appeared in [[72, [73, [74, 9, 127, K6, [75, 24, 67, [76], and we
try to give a unified account of these results. For pedagogical reasons, we will begin by
presenting special classes of solutions in the beginning and comment on more general ones
in the last part of this chapter.

The euclidean action of the static noncommutative Ward model coincides with the
energy functional of the (142)-dimensional time-dependent model (B37) evaluated on
static configurations [73]. We thus have in the operator formalism

E[@] = 27 |[a,9]]" = 7Tr (Ad! @ + dTAD) (4.1)

with Laplacian given as in (2I8).

Varying E[®] under the above constraint, one deduces the static equation of motion
corresponding to (B31),

0 = [a,®[a!, @] + [af,®'[a,®]] = ®TADP - AD'D. (4.2)

There is a wealth of finite-energy configurations ® which fulfill the equation of motion
@Z). A subclass of those is distinguished by possessing a smooth commutative limit,
in which ® merges with a commutative solution. The latter have been classified by
115, M28]. We call these “nonabelian” because they cannot appear in the U(1) case,
where the commutative model is a free field theory and does not admit finite-energy
solutions. Yet, there can and do exist non-trivial abelian finite-energy solutions at finite
6 whose 8 — 0 limit is necessarily singular and produces a discontinuous configuration.
We term such solutions “abelian” even in case they are embedded in a nonabelian group.
They provide the genuinely new features arising in the noncommutative setting. Both
abelian and nonabelian solutions are interesting in their own right as abelian solutions
present new classical configurations and the latter allow a direct comparison with the
behavior of configurations in the commutative case.

As an introductory example of a static solution let us consider the simplest possible
case, namely solutions of zero energy. They are given by ® =V ® 14, V € U(n) as can
be seen from the following line of thoughts:
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Energy zero implies [a, CD] = 0 and thus ® must only depend on the annihilation operator
a but not on af. We may then (at least formally) expand the field in terms of a with
nxn-matrix valued constants to see that due to the non-boundedness of the annihilation
operator ® can actually only depend on a’, i.e. be proportional to unity, if it is to be
bounded. Hence we indeed find

E@0 =0 = @& =V®ly. (4.3)

Having found a very simple solution we will now take a more systematic approach
towards the analysis of all possible solutions and encounter many additional ones on the
way.

4.1 GRASSMANNIAN CONFIGURATIONS AND BPS BOUND

It is a daunting task to classify all solutions to the full equation of motion (Z), and
we begin by focusing on the subset of hermitian ones. Any, not necessarily classical,
hermitian configuration obeys

Pl = @ — P = 1,01y = 1 (4.4)
and is conveniently parametrized by a hermitian projector P = PT via,
® = 1-2P = P+ —P = ™ with P> = P, (4.5)

where P = 1—P denotes the complementary projector. The set of all projectors unitarily

equivalent to P is called the Grassmannian, and it is given by the coset
U(H@n)

U(im P) x U(ker P)’

Gr(P) = (4.6)
similar to the definition (B:2)) in the finite dimensional case. Thus, each given P, and thus
each hermitian ®, belongs to a certain Grassmannian, and the space of all hermitian ® de-
composes into a disjoint union of Grassmannians. The restriction to hermitian ® reduces
the unitary to a grassmannian sigma model, whose configuration space is parametrized
by projectors P.

Equation () for the energy of a solution is given in terms of the projectors P as

S%E[CD] = Tr([da!, P] [P,a])

(4.7)
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which, similar to the commutative case, may be compared with a topological charge
deﬁnedﬂ as 88, B9

Qo] = i@Tr (© 0,0 0D — B 0:P 0,P)

= (P [al, P][a, P] - P [a. P][u. P])
= Tt (P~ PaPa'P+Pd'PaP) (4.8)
= Tr(Pa(l—P)a'P—Pa' (1 —P)aP)

= [P [a.P]’ —HaaP]P!Q

Note that each hermitian projector P gives rise to the complementary projector Pt :=
1 — P, with the propertieﬁ

El-P] = E[P] and Q[1-P] = —Q|[P)]. (4.9)

Now, comparing (f71) and [EXR) we get the relations

8%E[P] = Q[P] +2]|[a, P} P|" = —Q[P]+2|P [a,P]|*, (4.10)

which yield the BPS bound (see also section BZTl)
E[P] > 87 |Q[P]] (4.11)

for any hermitian configuration. Supposed that either im P or ker P =im 1 — P is finite
dimensional the topological charge () is integer valued and admits a simple interpretation
given by

Tr P = rank P = dim(im P) , dim(im P) < o0

Pl = (412
eLp) { —Tr(1—P) = —corank P = — dim(ker P), dim(ker P) < oo (4.12)
as can be easily checked with ([E8) and cyclicity of the trace in this finite dimensional
case.

Nevertheless, the interpretation of the nature of the topological charge in general is
not as clear as in the commutative case where the topological charge () is an element of
7o(Gr(P)) = Z, with S? being the compactified plane. Hence, it is an invariant of the
Grassmannian if one excludes from the definition of the Grassmannian ([B.2) any singular
unitary transformations with nontrivial winding at infinity. It is less obvious how to
properly extend this consideration to the infinite-dimensional cases encountered here [52).
In the case that P has a finite rank or corank the argument still carries through but
subtleties may arise in other cases. We therefore take a pragmatic viewpoint and demand

!Note that Q as given here is well defined for all hermitian solutions of finite energy.
2By a slight abuse of notation, we denote the energy E and topological charge @ as functionals of P
again.
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Q[P] to be constant throughout the Grassmannian. This may downsize the above coset
Gr(P) by restricting the set of admissible unitary transformations Y.

Let us make this more explicit by computing Q[UPUT] for some unitary transformation
U € U(H®") on the Hilbert space. To this end, we define

w = U [a,U] and w' = U'[d" U] with [a+w,al+w] =1, (4.13)
as elements of the Lie algebra u(H®") of U(H®")H A short calculation yields
QuUPU] = Tr (P [a'+w!, P] [a+w,P] = Pla+w,P] [a' +w', P])
= QP + T P({[a", P], w} — {[a.P], '} (4.14)
— w1 - Pw+w(l— P)uﬁ)P,

with the anticommutator {a, b} := ab+ ba. This equation constrains w in terms of P. In
case of TrP < oo, this indeed reduces to

QIUPUT) = Q[P] + Tt P ([w,a'] + [a,0'] + [w,w']) = Q[P]. (4.15)

Alternatively, we may calculate the infinitesimal variation of Q[P] under P — P+JP.
Remembering that P and P are bounded and that their commutators with a or a' are

Hilbert-Schmidt, we get
0Q[P] = T ([dl, [P,0P][a, P]] = [a, [P,0P][dl, P]]) (4.16)
+3Tv6P ([af, P][a, P] — [a, P][a, P]) , '

with the first trace being a “boundary term”. Variations inside the Grassmannian are
given by
§P = [Ao,P], with Al = —A, and PAP = 0 = (1—P)A,(1—P) (4.17)
(see section B.I.3), and thus
SQ[P] = Tr([a,As[a", P]] = [af, As[a, P]]) (418)
+ 3Tr [P, Ao[a, P][a', P] — Ao [a', P][a, P]] .

Hence, if A, is bounded, the second term vanishes and §Q[P] reduces to the boundary
term.

Formally, another invariant of grassmannian configurations is the rank of the projector,

r = rank(P) = dim(im P), (4.19)

3 In fact, the finite-energy condition (see remark below (B:38)) enforces [a , UUPUT] to be Hilbert-Schmidt
which implies that [w, P] is Hilbert-Schmidt, as well. Unfortunately, this does not suffice to guarantee
the constancy of @ in Gr(P). On the other hand, w itself need not even be bounded, as in the example
of Z3) where w = (e’ —1)a.

4Yet again, this condition is too strong a demand as the examples of (I41) and (EZ3) indicate.
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which may differ from () when being infinite. For simplicity, let us consider a special class
of projectors consisting of a finite rank piece and a part proportional to the unit operator
in the Hilbert space. Such a projector can be decomposed as

~

P=U(P+P)ut with P=P®1ly and PP =0 = PP, (4.20)
where U is an admissible unitary transformation, P denotes a constant projector, and the
rank " of P’ is finite. In this case the difference of r and () is determined by the invariant
U(n) trace [96], 97] i

R[P] = trP €{0,1,...,n}, (4.21)
and these projectors are characterized by the pair (R, Q). Formally, the total rank then

becomes r = R-00 + Q. Since a and a' commute with P, the topological charge depends
only on the finite-rank piece,

QIP] = QP+ P] = Q[P = TP = . (4.22)

For P = 0 one obtains the abelian solutions because they fit into U(H). For R>0 we have
nonabelian solutions because more than one copy of H is needed to accommodate them.

Having presented general properties of grassmannian configurations we introduce a
convenient formulation for the configurations under consideration realizing that any pro-
jector in C" ® H = H®" can be parametrized as

P = [T)(T|T)™T], (4.23)
where
T T ... |TD) )
1= (P ) - |T:;> |T:§> |T:;> ) |T:2> ™
oy T )

denotes an nxr array of kets in H, with r possibly being infinite. Thus,

@iy = () = () (4.29

i=1

stands for an invertible rxr matrix, and r is the rank of P. The not necessarily orthonor-
mal column vectors |T*) span the image im P of the projector in H®". There is some
ambiguity in the definition ([ZZ3) of |T") since

7y — |T)T, forI' € GL(r) (4.26)

amounts to a change of basis in im P and does not change the projector P. This freedom
may be used to normalize (T'|T") = 1,, which is still compatible with I' € U(r). On the
other hand, a unitary transformation

IT) — UIT), forl e UH®") (4.27)
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yields a unitarily equivalent projector /P U".
Altogether, we have the bijection
P =UPU = IT) = US|T) = U|T)T with S € GL(imP). (4.28)

Here, the trivial action of 4 € U(im P) x U(ker P) on P can be subsumed in the S action
on |T).

We may be more explicit for a diagonal projector which can be cast into the form

Q-1
P, = diag (ELH,...,II%,PQ,QH,...,OH> with Py = > |m)(m|.  (4.29)
m=0

vV vV -
R times n—R—1 times

Formally, Py has rank r in H®". A corresponding rxn array of kets via ({23]) would be

HY 0 ... 0 0
0 |H) 0 0g
o= | 0 o ") 0o |, (4.30)
0 0 0 |To)
D0 0 0o
where we used
H) = (]0) 1) ]2)13) ...), p:=(0 000 ...),
To) == (10) 1) ... |Q-1)), 0g = (0 0 ... 0). (4.31)
~—_————

Q@ times

In the abelian case, n = 1 and R = 0, this reduces to |Ty4) = |Tg), and any projector is
unitarily equivalent to Pg. Due to (L), analogous results are valid in the complementary
case P — 1—-P.

The above paragraph yields a useful way of parametrizing solutions which will be used
extensively throughout the following sections.

4.2 BPS SOLUTIONS

After having presented general properties of grassmannian configurations let us now delve
a little deeper and focus on special solutions within a Grassmannian. For ® = 1—-2P, the
equation of motion (E2) reduces to

0 = [AP,P]
= [af,(1=P)aP] + [a, Pa'(1—P)] (4.32)
= [a,(1-P)a'P] + [a', Pa(1-P)],
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which may be compared with the commutative result (B30). Still, it is not clear how to
characterize its full solution space. However, ([{32) is identically satisfied by projectors
subject to [43, 8]

either the BPS equation 0 = [a,P]P = (1-P)aP (
or the anti-BPS equation 0 = [a",P]P = (1-P)d'P, (
which are only of “first-order”. Solutions to (E33) are called solitons while those to (Z.34)
are named anti-solitons in analogy to the commutative case discussed in section B2l
Hermitian conjugation shows that the latter are obtained from the former by exchanging

P «— 1—P, and so, without loss of generality, we can ignore the anti-BPS solutions for
most of this thesis. Equation ([33)) means that

a maps imP — imP (4.35)

and, hence, characterizes subspaces of H®" which are stable under the action of a. The
term “BPS equation” derives from the observation that (f33]) inserted in (I0) implies
the saturation of the BPS bound (EITl), which simplifies to

E[P] = 87Q[P] = 87Tr(Pa(1-P)a'P) = 87 Tr(Paa'P—aPa’). (4.36)

For projectors of finite dimensional image or kernel we find F = 87 () with () given
as in ({I2) and for BPS solutions of the particular form (EZ20)) we indeed recover that
E[P] = 87 TrP’. Clearly, these BPS solutions constitute the absolute minima of the
energy functional within each Grassmannian.

When the parametrization (fZZ3) is used, the BPS condition (f33) simplifies to
a|TH = |TF) v, for some rxr matrix v = ('), (4.37)

or abbreviated
alT) = [T}, (4.38)

which represents the action of @ in the basis chosen for im P. For instance, the ket |Tg)

in (E30) indeed obeys

0v1 0 .. 0
‘ 00 V2 0
alTg) = To)ve with v = |+ . - , (4.39)
00 0 VO—-1
00 0 0

and the diagonal projector Py in (E29)) is BPS, but it is by far not the only one.

Any basis change in im P induces a similarity transformation v — I'yI'~!, which
leaves P unaltered and thus has no effect on the value of the energy. Therefore, it suffices
to consider v to be of Jordan normal form. More generally, a unitary transformation

#28) is compatible with the BPS condition (E38) if and only if

U'ald|T) = |T)v, for some rxr matrix v, (4.40)
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which in the notation of ([LI3)) implies that
w|T) = |TYy, with 7, = —"7. (4.41)

The trivially compatible transformations are those in U(im P) x U(ker P), which can be
subsumed in S € GL(im P) and lead to 7;y = I'"'yT". Another obvious choice are rigid
symmetries of the energy functional, as given in (B41), (B23)), and (839) for W = V. The
challenging task then is to identify the nontrivial BPS-compatible unitary transformations,
since these relate different a-stable subspaces of fixed dimension in H®" and thus generate
the multi-soliton moduli space. For |Ty) in ([230) we shall accomplish this infinitesimally
in section

4.3 CLASSIFICATION OF SOLITONS

4.3.1 Abelian solitons

Let us now take a closer look at the BPS solutions of the noncommutative U(1) sigma
model. All finite-energy configurations are based on R = 0 and have rank » = Q) < oo,
thus F = 8mr. Using the parametrization (L23)) the task is to solve the “eigenvalue
equation”

¢ [(Gal 0
alT) = |T)y, for v =@ : - - with «a, € C, (4.42)
s=1 0 0 as 1
0 0 ... 0 as
where the Jordan cells have sizes r, for s = 1,...,¢ with >-?_ r, = r. For a given rank r,

the above matrices v parametrize the r-soliton moduli space. The general solution, unique
up to cell-wise normalization and basis changes [T®)) s |T)I) | reads

Ty = (IT0) .. |T@))

(4.43)
with [70) = (o) allon) .. ()™ o)

(rs—1)!

and is based on the coherent states (ZZI9). In the star-product picture, the corresponding
® represents r lumps centered at positions o, with degeneracies r, in the z — y plane.
Note that a Jordan block of size r, yields a sub-basis {|as),af|a), ..., ("))},
whose span is obviously invariant under the action of a.

Lifting a degeneracy by “point-splitting”, the related Jordan cell dissolves into different
eigenvalues. Hence, the generic situation has r; = 1 Vs, and so

v = diag(ar, as,...,qa,) = |T) = <|a1) las) ... \o@), (4.44)

revealing again the key role of coherent states (ZI9). We note that our solution depends
on r complex moduli. The ensuing BPS projector

Pyo= Y Ja) ({efa)), (ol (4.45)

k=1
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generates a superposition of r Gaussian lumps in the Moyal plane. The fusion of these
lumps by means of taking the limit of coinciding positions and taking appropriate coor-
dinates smoothly produces lumps of higher weight or degeneracy again [43].

Besides the (inessential) choice of normalizations, only a residual permutation free-
dom remains in the solution |T) = |a) := (|a1),|as),...,|a)). This corresponds to a
relabeling of the lumps and emphasizes their bosonic character [50, B1].

Each solution can be translated via a unitary transformation mediated by D(5) (ZZ3),
which essentially shifts oy, — a,+0 V¢ and rotated by R(9) (Z23), which moves oy —
eV, V0. The individual values of oy (the soliton locations) may also be moved around
by appropriately chosen unitary transformations, so that any r-soliton configuration can
be reached from the diagonal one, which describes r solitons on top of each other at the
coordinate origin [48]:

r—1
T) = U|T)T <« P =UPU with P =Y |m)(m|. (4.46)
m=0

We illustrate the latter point with the example of r = 2. Generically,
(low) laz)) = US(|0) 1)) = u(|0) [1))T
with US = |a){(0| + |a) (1] + ...,

(4.47)

where the omitted terms annihilate |0) and |1). Factorizing ¢S yields

_ 1 1) |aa) e
U = V1-|o]? <\/<a1|a1) \/(OQ‘O@) ( 0 ew) (4.48)

—sin@  cosf" (0]
sinff  —cosf ) \ (1] e

_ [cosB cosB (€7 0
and T = <sinﬁ sin 5') (O ei,yl> (4.49)
with o = <Oél‘042> — ed1a2*%\al|2*%|a2\2 — efi(’Y*“/) COS(ﬂ—ﬂ/) 7

\/<041\(11>\/<042|042>

so that |o|? = e71*1=*2I” "and 4’ and 7+’ remain undetermined. The rank-2 projector
becomes

p_ L <|041><041| |az) (| olar)(as| 4 7as) (o]
I=fo|* Malar)  {az|asz) V{elar)/(aslas) (4.50)

- u(|o><oy+y1><1y)w.

4.3.2 Nonabelian solitons

We proceed to infinite-rank projectors. For simplicity, let us discuss the case of U(2)
solitons — the results will easily generalize to U(n). Clearly, we can embed two finite-rank
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BPS solutions (with R = 0) into U(H@®H) by letting each act on a different copy of H.
Such configurations are noncommutative deformations of the trivial projector P = (§39)
and thus represent a combination of abelian solitons. Therefore, we turn to projectors
with R = 1 and so, formally, r = oo + Q. Given (2Z0) such solutions may be considered
as noncommutative deformations of the U(2) projector P = (}9). For this reason, one
expects the generic solution |7) to (E38) to be combined from a full set of states for the

first copy of H and a finite set of coherent states |ay) in the second copy of H,
T = (\m 0O 0 ... 0 ) W)
0 Jou) faz) .. og)
which yields the projector
@ —1
P=tx @3 o) ((ala)) (el (4.52)

with E = 87 Q. This projector is of the special form ([20), with P = (} ) and U = 1.
By a unitary transformation on the second copy of ‘H such a configuration can be mapped
to the diagonal form

|T)—<‘H>0 oo 0) = Py =1y & P, (4.53)
T oy Q- T |

It is convenient to reorder the basis of im P4 such that

T - (0 00 ‘H>) - (SQ) M) = T, (454)

0y 1) ... |Q-1) 0 Py
where
Q-1 00
Po = Y lmml, and Sg = (a)? = 3 Im—Q)m|  (4.55)
m=0 m=Q

denotes the Q-th power of the shift operator. The form of (B2l suggests to pass from
states |T) = ) with R =1 to operators T = I on H:
|T2) 15
IT) = T/H) = P = T(T'7)7'7". (4.56)

In fact, it is always possible to introduce T as

T, = Y |TH(-1] = |T}) = Ti|t-1) fori=12,(=1...r. (457)
=1

5The “"” is used here again to avoid confusion.
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We may even put T = 1y by using the freedom T — TT with an operator [ =
(T7T)~2. Our example of |Ty) in (BH4) is already normalized since

SiS] = 1y but SiS; = L —|0)0] =  SLSo+ Py = 1. (4.58)

It is instructive to turn on a BPS-compatible unitary transformation in (EL20). In our
example (54, we apply [78]

Sov/ o= Sh So—rE

N+ VNo+pi

p___ gt rPe—yNe (4.59)
v/ No+ui Q v/ No+up

with No = a/%®? = N(N—1)---(N—Q+1)

U(p) =

to Ty = (Sq, Po)' of (ES54). With the help of
SQPQ =0 = NQPQ and SQ\/NQ = CLQ (460)

we arrive at

T = uGs = (%)) Jﬁ = (%) = Twr. @

This transformation can be regarded as a regularization of 7§ since

lim T'(p) = (o) Ty with & = lim arg (4.62)
pn—0 p—0
and thus
lim P(n) = Pu, (4.63)
u—

but note the singular normalization in the limit! For completeness, we also display the
transformed projector,

Q_1 9 ,Q__&
Iy Oxn i @ Nog+un® @ NQiMﬂ
P(p) = U(p) o p Up) = . 0 - : (4.64)
e No-+un® No+upp

It remains to be seen that such projectors are indeed BPS? Writing |T') = T|H), the
BPS condition

a|TH = |TFY~,,  implies  aT; = T;4 withi=1,2 (4.65)

for some operator 4 in H. We do not know the general solution for arbitrary 4. However,
an important class of solutions arises for the choice 4 = a where the BPS condition reduces
to the “holomorphicity condition’

[a,T})] = 0, fori=1,2. (4.66)

6 This may even be the general case: If there exists an invertible operator I solving al' = ', then
the general solution to (63 reads T; = T;I" with [a,T;] = 0, and T" can be scaled to unity.
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These equations are satisfied by any set of functions {Tl, TQ} of a alone, i.e. not depending
on al. Indeed, for the example of Ty in (54, we concretely have

~

7= aPy + (In—Po)ay/ F2, (4.67)
while T'(y) in (EBT) is obviously holomorphic and thus BPS. Because (1) emerges from
Ty via a BPS-compatible unitary transformation it shares the topological charge ) and
the energy E = 87 with the latter.

The generalization to arbitrary values of n and R < n is straightforward: 7" becomes
an nxR array of operators (), on which left multiplication by a amounts to right
multiplication by an Rx R array of operators 4. For the special choice 4,7 = §, a, any
collection of holomorphic functions of a serves as a solution for TZL. Quite generally,
one can show that for polynomial functions TiL(a) the resulting projector has a finite
topological charge () given by the degree of the highest polynomial and is thus of finite
energy [77, [73, B2]. In this formulation it becomes evident that nonabelian solutions
have a smooth commutative limit, where v/26a — z and § — 0. Indeed, they are seen
as deformations of the well known solitons in the Gr(n, R) = % grassmannian
sigma model[] Hence, the moduli space of the nonabelian solitons coincides with that of
their commutative cousins. By rescaling T — TT with a C-valued RxR matrix I’ we
can eliminate R complex parameters from nR independent polynomials. For a charge-Q)
solution, there remain nR(Q + (n—1)R complex moduli, of which (n—1)R parametrize
the vacuum and nR(Q describe the position and shape of the multi-soliton [77]. For the
case of CP' this yields a complex 2(Q)-dimensional soliton moduli space represented by
(2) = (/\Zgizzi’;). Our sample calculation above suggests that taking 75 — p and then
performing the limit ;1 — 0 one recovers the complex ()-dimensional moduli space of the

abelian solitons given by |T') = (Jai) ... |ag_1)) as a boundary.

4.4 UNITON THEORY AND NON-BPS SOLUTIONS

In the preceding discussion we derived general properties of BPS solutions and presented
some generic examples. These may be embedded in a more general framework, the so-
called uniton theory, instigated in the commutative case by the work of Uhlenbeck et
al. [I15, T20], which allows for the classification of solutions to two-dimensional euclidean
sigma models (for a review see, e.g. [I33]). The main result of this analysis is the assertion
that under certain assumptions all solutions to the equations of motion can be constructed
from basic ones by the addition of such unitons. In fact, any classical solution ® for the
commutative U(n) sigma model can be constructed iteratively, with at most n—1 so-called
unitons as building blocks |15 128]. In this context the encountered BPS configurations
or solitons are precisely the one-uniton solutions. Following the analysis of [25] we will
now present a generalization of this scheme to the noncommutative setting.

7 For the above-discussed example one has Gr(2,1) = CP!.
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Let us start with a general noncommutative configuration ® € U(H®") and assume
we are given a hermitian projector P satisfying

P®_(1-P) = 0 and (1-P)®_P+2(L-P)[a,P] = 0, (4.68)
where we employed the following notation similar to the introduction of J in (BI0):
xo = X! [a, X] (4.69)

with y being an operator on H®" not to be confused with the perturbation considered in
(BI3)). Defining the configuration ¥ as

U = &(1L-2P) (4.70)
we can then prove the following
Proposition 4.1 (Uniton construction)
LU = ®_+2]a,P]
ii. The energy (@) of V is given by E[V] = E[®] + 87 Q[P].

iii. If ® is a solution to the equations of motion ({E2) then ¥ also solves them.

Proof. The first proposition is easily proved by direct calculation:
U_ = (1-2P)®"[a,¢(1-2P)]
= —2(1-2P)[a,P]+(1—-2P)P_(1—-2P)
= 2(P[a,P] +[a,P]P)+P®_P+ (1-P)®_P+ (1-P)®_(1-P).
Here we made use of the fact that every field y can be decomposed as
X = PxP+(1-P)xP+Px(1-P)+ (1-P)x (1-P), (4.71)

and the projector property P? = P. Since these four parts are mutually orthogonal with
respect to the squared Hilbert-Schmidt norm, the energy of ¥ also decomposes into a sum
allowing us to rewrite it as

2 2
LEW] = |[a,¥]]" = |V_]

2r

= |PU_PP+|(1-P)U_PP"+|PU_(1—-P) + |(1-P) U_ (1—P)|?

o+ (1P o, P][* = [[a, P] P[*)
= % E[®] +4Q[P].
Finally, the equation of motion may be rewritten to

[a, @ ] + [a,®'] = 0, (4.72)

from which one derives upon insertion that if (E72) holds for ® then ¥ also is a solution.
|
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We have thus seen that it is possible to construct a new solution from a given one by
the addition of a projector P subject to certain conditions. A projector satisfying (EGS)
is called a ®-uniton and in this way W is obtained from ® by adding the ®-uniton P.
Note that the addition of a uniton is invertible in the sense that if we constructed ¥ in
the above way then 1—P is a W-uniton and adding 1—P to V yields —®, as can be easily
checked.

Let us turn to a more special case in which the full beauty of the uniton approach
emerges. For this we now consider a restricted class of configurations, namely those for
which dim(im [a, ®]) < ool The solutions given by (@20) definitely belong to this class
and furthermore, we know of no solutions which are not included in it. In the case at
hand we can lower the energy of a solution by the following construction.

Proposition 4.2 (Addition of negative uniton)

For a solution ® with dim(im [a, CID}) < oo define P as the projector onto im®_ =
im (<I>+ [a, CIDD Then 1—P is a ®-uniton and we have for the energy of the ensuing
solution

E[®(1-2(1—P))] = E[®] -8 dimim®_ . (4.73)

Proof. First note that dim(im [a, CID}) < oo implies the same property for im & _ and hence
oo > dim(im ®_) = dim(ker(1—P)) = — Q[1—P] establishing the above energy formula
if 1— P is a ®-uniton. To prove that this is indeed the case we rewrite the condition (EL6S))
in the form

(1-P)®_P =0 A (1-P){<1>i+2a*}P — 0,
which shows that 1—P is a ®-uniton if and only if ®_ as well as ®' + 24f map im P

into itself. Obviously this is the case for ®_ by definition. Furthermore, we find from the
equation of motion (F2)

0 = [a, @]+ [al,®"] = [®_,0] +24f].
Hence, considering the image of x P := (®' + 2a!) P yields
XPH® = YPO_H" = YO_H = d_yH"" Cim®_ = imP,

which concludes the proof. [ |

This results entails some important conclusions.

Corollary 4.3 (Uniton factorization)

For every solution ® as above there exists a sequence of solutions {®;},—o, . m withm € Ny
such that ®,, = ®, @ is a zero energy solution as given in ([{3)) and each ¥, is obtained
from ®; by the addition of a ®;-uniton.

8 Actually, it would have been sufficient to demand dim im ®_ < oo but in view of our former definition
(see section BZ2) we deemed the given condition more appropriate and are not aware of any configuration
not included in either both or none of these two.
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Proof. By the above assertion we can lower the energy of the solution ® and repeat this
procedure until we arrive at a solution of zero energy (note here that the energy is lowered
in integer steps). Since this process is invertible we repeat the procedure in the reverse
way thus establishing the result. |

Corollary 4.4 (Quantization of energy)
The energy of all solutions to the equation of motion belonging to the above defined class
is an integer multiple of 8.

Proof. This is a direct consequence of the uniton factorization. Let P; be the correspond-
ing ®;-unitons, assumed to have finite dimensional image. The energy is then given by

m—1 m—1
E[®] = 87 Z dim(im P;)) = 8=« Z rank P, . (4.74)
=0 i=0

Solutions of the next-to-lowest possible energy values 87 and 167 play a special role
in this context as can be seen from the following

Corollary 4.5 (Solutions of small energy)
A solution of the class defined above with energy 8wk for k = 1,2 is, up to unitary
transformations in the group space as given by ([B39), a rank k BPS solution.

Proof. This claim is obvious for a solution of energy 87 which derives from the addition
of a rank 1 uniton to the basic solution (E3)). A solution of energy 167 may now be either
constructed from a solution of zero energy or a solution of energy 8m. The first case is
easily handled by the same argument whereas for the latter we show that the addition of
a rank 1 uniton to a BPS solution of energy 87 always yields a BPS solution. The general
case can be reduced to this settingE Now, let &1 =1 — 2 P; be such a BPS solution and
let P be a ®;-uniton of rank 1 with image im P := Z. The uniton-condition (Z68) may
be rephrased as

(1-P)® _P =0 A (1-P){®,_+2a}P = 0,

making it obvious that Z has to be an invariant subspace of @L as well as ®;_ + 2a.
The image Z; := im P; is a 1-dimensional subspace of the Hilbert space and we find that
the image of ® = —2(1—P;)a’ P, is a 1-dimensional subspace of Zi-. Furthermore,
ker ®! = Z;- and we thus see that invariance of Z under ®' implies Z C Z;*. Hence
the new solution & = (1 -2 P;)(1 —2P) = 1—2 (P, + P) is grassmannian with projector
P, + P onto Z; @Z. On Z the operator ®; _ + 2a can be written as 2 (1—P;) a and the
invariance of Z under it is thus equivalent to aZ C Z; ¢ Z. Finally, using that &, is a
BPS solutions, i.e. aZ; C Z; we conclude that a (Z; ®Z) C Z; @ Z and therefore @ is also
a BPS solution, as claimed. |

9To see this take a general solution ®; = (V ® 1) (W @ 1y) of energy 87 with ®, BPS and a
rank 1 ®;-uniton P. The new solution ® = ®; (1 —2P) = (V® 1) P1 (1 — 2 P) (W @ 1y), where
P:= (W'®1y) P (W ® ly) is a ®;-uniton and the situation is indeed traced back to the BPS case.
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Note that it is not possible to extend the result of the previous corollary to solutions
of energy 87 r with r > 3, which may be illustrated by the following U(1) example of a
solution of energy 3 - 8.

Example 4.1 (block-diagonal solutions of energy 3 - 87)
Consider the simple BPS solution &, := 1 — 2 F, with F, := |0)(0| and define a rank 2
projector P by

P = |1>(1|+ﬁ(|0)+c|2))(<0|+6<2|), force C.

It is then easy to check that P is a ®;-uniton and the ensuing new solution @ is given by

1—|c|? 2¢
1+]c|? 0 1+]c|?
0 -1 0
—le|?
o =0 (1-2P) = | 5725 0 7% . (4.75)
1

There exist some special choices for the parameter c. First of all, if ¢ = oo we find that
() reduces to the known diagonal rank 3 BPS solution (40) parametrized by the
projector > ;_, |k)(k|. Furthermore, for ¢ = 0 we find a grassmannian diagonal non-BPS
solution with projector |1)(1]. All other values of ¢ imply non-grassmannian solutions
of equal energy and hence lead to a family, more explicitly a sphere CP!, of solutions
interpolating between the rank 3 BPS solutions and a diagonal grassmannian solution of
the same energy thus providing moduli of the solution at hand.

Configurations of the form above, namely such that they act as unity on all basis
states |k), with k& > r for some r € N will be called block-diagonal of rank r. Domrin is
able to prove [25] that all block-diagonal solutions of rank 3 are either diagonal or given

by ET3).

Before continuing to analyze the block-diagonal solutions in more generality let us, for
the sake of clarity, first take a closer look at those configurations which are diagonal in
the oscillator basis (ZI1) as well as in C”, namely

d = @ diag({e'*}5,) (4.76)

with af € R. From the action of A on a basis operator,
Alm){n| = (m4+n+1)|m)(n| — vVmn|m—1)(n—1|

— v/ (m+1)(n+1) |m+1)(n+1],

we infer that A maps the k-th off-diagonal into itself, so in particular it retains the
diagonal:

(4.77)

AlmYim| = (2m+1) [m){m| — m|m—1)(m—1| — (m+1) [m+1){m+1|.  (4.78)
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A short computation now reveals that the configuration (EZ76) obeys the equation of
motion (B2 if and only if the phases satisfy el = ei(ei+nm) — teiol where nf € {0,1}
and the sign thus depends on /. Its energy is then formally given by

E[Cb] = 271'2 Z {(2€+ 1) _ (_1)n€+ne+1 (£+ 1) B (_1)ne+ne—1 E} ’

1=1 {€Ny

which is finite if the number of positive signs or the number of negative signs - in other
words if the number of transitions from positive to negative signs and vice versa - in each
block labeled by i is finite. Turning to grassmannian configurations, we find that every
diagonal hermitian configuration ® = diag{£1} is a solution and hence any diagonal
projector P solves (E32)). Let us first consider the case of U(1). Given the natural ordering
of the basis {|m)} of H, any diagonal projector P of finite rank r = ) can be written as

q rs—1 q
P =" |metk)(m+k] = Y S P Sa, (4.79)
s=1 k=0 s=1

with mgy 1 > mg+rs Vs and 23:1 rs = r. Here, S,,, again denotes the m,-th power of the
shift operator as in (EL55). Via

q

AP = Z{ms|ms><ms| = s ms—1){m,—1 (4.80)

— (mg+rs) Img+rs) (ms+rs| + (mgtrs) |m5+r5—1>(m5+7“8—1|}

its energy is easily calculated as
q
S E[P] = Q + 2> my, (4.81)
s=1

which is obviously minimized for the BPS case ¢ = 1 and m; = 0. The energy is additive
as long as the two projectors to be combined are not getting “too close”. This picture
generalizes to the nonabelian case by formally allowing r; and m, to become infinite.
In particular, the energy does not change when one embeds P’ (or several copies of it)
into U(H®") and adds to it a constant projector as in (EZ0). Hence, with the proper
redefinition of the my, (BRI holds for nonabelian diagonal solutions, as well.

This analysis ties in quite nicely with what we have already learned about block-
diagonal solutions since the diagonal grassmannian solutions encountered above may be
put into a more combinatorial context upon noting again that the freedom we have to
construct these is given by the distribution of plus or minus signs in front of the diagonal
entries. We therefore find that the set of all block-diagonal solutions of rank r contains

precisely >0, (;) = 2" diagonal grassmannian solutions whose energy varies from 0 to

r(r+1)

5— - 87 in integer steps without gaps. The number N(r, k) of diagonal grassmannian

10albeit conceivably not of finite energy and therefore possibly not in the class of configurations that
we wish to consider.
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solutions which are block-diagonal of rank r and feature energy k- 87 therefore generically
grows very large with r. More precisely, it may be computed as the number of distinct
partitions into positive integers of the number k, which can be explicitly written in terms
of generalized hypergeometric functions [122].

It is tempting to try to generalize the geometric understanding implied by the example
FTl to higher rank solutions. The investigation of these cases is still under way and there
only exists a conjecture on the structure of the corresponding block-diagonal solutions.

Conjecture 4.6 (Block-diagonal solutions )
The set of all block-diagonal solutions of rank r and energy k- 8w is a connected compact
complex manifold of complex dimension N (r, k)—1 which interpolates between the N(r, k)
diagonal solutions of the same rank and energy.

Without being able to give a proof to this conjecture, we present some examples simi-
lar to (B0 in favor of it. The construction of these is based on a diagonal grassmannian
solution parametrized by a projector whose image is spanned by a sequence of basis states
{Im),...,|m+r—1) for m € Ny and rank r € N.5. The energy of this solution is given by
(m-+r) - 8. Another diagonal grassmannian solution of equal energy is then given by a
projector whose image is spanned by {|m+1), ..., |m+r—2), i.e. constructed by removing
the first and the last basic vector in the above set. It is again possible to interpolate
between these two solutions as the following argument shows:

Consider the diagonal BPS solution ®,,, 1 := 1—2 P, with im P,,, ;1 = span{|0),...,|m)}
as in ({40) and an additional projector P(c), whose image is spanned by {|0),. .., |m—1),
Im+1), ..., |m4r—2), |m) + ¢|m+r—1)}, where ¢ € CIY Using

Opyr = — > |K)EI+ DY k) = @y = Vm+1|m)(m+]]

k=0 k=m-+1
and
m-+r—2 )
P o= 3" k) (k| + e (Imbr—=1)m+r—1] = |m)(m])
k=0
+ e M) (mtr =1 + 5 [m+r—1)(m],

it is straightforward to deduce that P is a ®p-uniton and that the ensuing new solution
is given by

L,
1—|c|? 2¢
1+]c[? 1+]c[?
d = Py(1 —2P) = — 1,y , (4.82)
2c 1—|c|?
1+]cf? 1+]c[?

1'We could just as well have chosen c|m) + |m+r—1) for the last vector the important fact being that
we choose any nonzero vector of the space spanned by |m) and |m+r—1).
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which includes both the solutions of equal energy that we started with as special cases
for ¢ = oo and ¢ = 0, respectively. Note also that this procedure may be iterated until
one eventually obtains a diagonal BPS solution based on a projector of rank 1 or 2. In
this way we get a chain of solutions each parametrized by a 2-dimensional sphere. Still,
this procedure does not exhaust all block-diagonal solutions in the general case as further
examples found in [25] show.

For the record, we finally note that in the case of a BPS solution the inversion P —
1— P generates additional solutions, which for the structure in ({20]) and BPS-compatible
unitaries U are represented as

P=uPr-pru (4.83)
with
P = (1,-P)®1y and (1-P)P' =0 = P'(1-P).
When 1—P+P' is BPS, P becomes anti-BPS with topological charge Q[P] = —TrF”,

producing an anti-soliton with energy E[P] = 8xTrP’. It is possible to combine solitons
and anti-solitons to a non-BPS solution via

P = P+ Pg provided P Pg =0 = PgFP, . (4.84)
so that their topological charges and energies simply add to
QIP] = QFq] +QFg] and E[P] = E[F,]|+ E[FPg] . (4.85)

For the diagonal case, this is included in the solutions discussed above. Examples for
U(1) and U(2), which appeared in [38], are (for m > r)

P = 1y4—-PFP,+ P with @ =r—m  and 8%E=T+m,

(4.86)
P = P, ®(1x—PF,) with Q=r—ry and £E=r+r,

respectively. Besides the global translations and rotations, other unitary transformations
are conceivably compatible with the equation of motion [AP, P] = 0, generating moduli
spaces of non-BPS grassmannian solutions. Outside the grassmannian manifolds, many
more classical configurations are to be found as we have already seen above.






CHAPTER 5

STABILITY ANALYSIS WITHIN THE
NONCOMMUTATIVE WARD MODEL

The aim of this chapter is to analyze perturbations of the previously discussed multi-
solitons within the configuration space of the two-dimensional, i.e. static, sigma model,
either within their Grassmannian or, more widely, within the whole group manifold. A
linear stability analysis in the commutative as well as in the noncommutative setting then
admits a two-fold interpretation. First, it is relevant for the semi-classical evaluation of the
euclidean path integral, revealing potential quantum instabilities of the two-dimensional
model whose current knowledge in the context of the commutative U(n) model is summa-
rized in [133]. Second, it yields the (infinitesimal) time evolution of fluctuations around
the static multi-soliton in the time-extended three-dimensional theory, indicating classical
instabilities if they are present. More concretely, any static perturbation of a classical con-
figuration can be taken as (part of the) Cauchy data for a classical time evolution, and any
negative eigenvalue of the quadratic fluctuation operator will give rise to an exponential
runaway behavior, at least within the linear response regime. Furthermore, fluctuation
zero modes are expected to belong to moduli perturbations of the classical configuration
under consideration.

Concentrating again on soliton solutions in the Moyal deformation of the euclidean
two-dimensional sigma model, we note that each BPS configuration belongs to some
Grassmannian, whose rank r can be finite or infinite. The latter case represents a smooth
deformation of the known commutative multi-solitons, while the former situation realizes
a noncommutative novelty, namely abelian multi-solitons which even occurred for the
U(1) model as we have seen in section Although these solutions are available in
explicit form, very little is known about their stability The following discussion based
mainly on the work [24] sheds some light on this issue, in particular for the interesting
abelian case.

5.1 GENERAL REMARKS ON THE FLUCTUATION ANALYSIS

In order to investigate the stability of the classical configurations constructed in the
previous chapter, we must study the energy functional £ in the neighborhood of the
solution under consideration. Since the latter is a minimum or a saddle point of F, all
the linear stability information is provided by the Hessian, i.e. the second variation of F

LA few recent works [T08, B2, 47, B8, 36, P9] address perturbations of noncommutative solitons but not
for sigma models.
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evaluated at the solution. The Hessian is viewed as a linear map on the solution’s tangent
space of fluctuations, and its spectrum encodes the invariant information: zero modes
belong to field directions of marginal stability and extend to moduli if they remain zero
to higher orders, while negative eigenvalues signal instabilities. A perturbation in such
a field direction provides (part of) the initial conditions of a runaway solution in a time
extension of the model. We cannot be very specific about the stability of a general classical
configuration. Therefore, we shall restrict our attention to the stability of BPS solutions as
introduced above, at which the Hessian simplifies sufficiently to obtain concrete results.
Since any BPS configuration is part of a moduli space which is embedded into some
Grassmannian which itself lies inside the full configuration space of the noncommutative
U(n) sigma model, the total fluctuation space contains the subspace of grassmannian
fluctuations which in turn includes the subspace of BPS perturbations, the latter being
zero modes associated with moduli. In order to simplify the problem of diagonalizing the
Hessian we shall search for decompositions of the fluctuation space into subspaces which
are invariant under the action of the Hessian. As we consider configurations of finite
energy only, admissible fluctuations ¢ must render 6> finite and keep the “background”
® unitary. Furthermore, they need to be subject to the same conditions as ® itself: ¢ is
bounded, [a, ] and [af, ¢] are Hilbert-Schmidt, and A¢ is traceclass (see also the remark
below ([B:38)). Finally, in keeping with our restricted notion of Grassmannians, we do not
admit hermitian fluctuations] which alter the topological charge.

5.1.1 The Hessian

The Taylor expansion of the energy functional (B37) around some finite-energy config-
uration ® can be deduced from the corresponding commutative expression (BI6) and
reads

E[®+¢] = E[9] +/d2 5;5) /d2 /d2z’¢ 53 5;5@( )¢>( Z) +
= E[®] + EV[®, ¢ + EP[®,¢] + ..., (5.1)

where the U(n) traces are included in [d®z. As already mentioned in section B2l the
perturbation ¢ is to be constrained as to keep the background ® unitary. Since we compute
to second order in ¢, it does not suffice to take ¢ € ToU(H®™). Rather, we must include
the leading correction stemming from the exponential map onto U(H®"), which implies
the constraint ([BI7) that is used to eliminate ¢! from the variations. It is important to
again realize that in this way the term linear in ¢ generates a contribution to E®)[®, ¢].
Performing the expansion for the concrete expression ({l) and using ([BI6) we arrive at

2 Perturbations inside the Grassmannian must be hermitian (see section below).
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the explicit expressions
EV[®,¢] = nTr{[a’, ®'¢ | [a, @] + [a, @] [a, PTp D]
— [a", @7 [a,¢] — [d', 6] [a, ']}
= 2r Tr{(ADT ® — T AD) 0T ¢}
=0,

d
an E@[®,¢] = 7 Te{ [af, ®'¢ '] [a, 6] + [al, ] [a, DT¢ D]

— [a',®T¢ @Tp ®'] [a, @] — [af, @] [a, DT PT¢ DT] }
= 2 Tr{®Tp ®Tp OT AD — DT BT Agp} (5.3)
= 2t Tr{¢' Ap — o' (PADT) ¢} + O(¢”)
= 2 Te{¢" H ¢} + O(¢7),
defining the Hessian
H = A — (dADY) (5.4)

as a self-adjoint operator. Hence, our task is essentially reduced to working out the
spectrum of the Hessian. Since A is clearly a positive semidefinite operator, an instability
can only occur in directions for which (PA®T) is sufficiently large.

For later reference, we present the action of H in the oscillator basis,
HY e [m)(l] = Y (Ho)me|m)((]
m,l m,l

with the components
(HO)me = (MAL+1) e — A/ (mAL) (1) prgre01 — VL d101

- Z Oy i {(GHE+D) @5k — /(GHD) (K+D) D1 i1 — VIEPj 151 ey
ik

(5.5)

where ®,, , as well as ¢,, ¢ are still nxn matrix-valued. At diagonal abelian backgrounds,
as given in ({79), the matrices reduce to numbers and the latter expression simplifies to

(HP)me = (m+L+1—2by,) Gy — / (Mm+L1)(l4+1) Gs1041 — VMl G101 (5.6)
with the abbreviation

q
bm = Z{(sm,ms mg + 5m,msflms + 5m,ms+rs (ms_'_'rs) + 5m,m5+rsfl<ms+rs)} ) (57)

s=1

which for fixed ¢ differs from (A¢),,, in at most 4¢ entries. For diagonal U(1) BPS
backgrounds ® = ¢, = 1 — 2P, this further reduces to

bm =T (5m,r—1 + 5m,r) . (58)
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5.1.2 Decomposition into even and odd fluctuations

Let us now specialize to grassmannian backgrounds, ® = 1 — 2P = &', characterized by
a hermitian projector P and obeying ®* = 1. Any such projector induces an orthogonal
decomposition

C"o®H = P(C"oH)® (1-P)(C"®H) =: imP ®ker P, (5.9)
and a fluctuation ¢ decomposes accordingly as

¢ = PoP + (1-P)¢(1-P) + P¢(1-P) + (1-P)¢ P, (5.10)
e do

where the subscripts refer to “even” and “odd”, respectively. Since ® acts as —1 on im P
but as +1 on ker P, we infer that

(I)QZSQ = ngeCI) in = _¢e
= (5.11)
and Pd, = —dd and @) = ¢,

to leading order from (BIT), i.e. even fluctuations are anti-hermitian while odd ones are
hermitian. This implies that odd fluctuations keep ® inside its Grassmannian, but even
ones perturb away from it. It also follows that in

Tr(¢" Ag) = Tr(o] Age) + Tr(of Ago) + Tr (o] Ado) + Tr (o) Agbe) (5.12)

the last two terms cancel each other. Furthermore, the equation of motion (E32),
[AP, P] = 0, implies that

(PAD), = 0 = Tr(¢! PAD ¢y) = 0 = Tr(¢) PAD @), (5.13)

because only an even number of odd terms in a product survives under the trace. Com-
bining (I2) and (2I3) we conclude that

ED[®, pet¢o] = ED[®, 0] + ED[D, 4] , (5.14)
which allows us to treat these two types of fluctuations separately.

The above decomposition has another perspective. Recall that any background con-
figuration ®, being unitary, can be diagonalized by some unitary transformation,

® = U U' = Udiag({e™})UT with ), € C. (5.15)

When & is hermitian, i.e. inside some Grassmannian, the diagonal phase factors can just
be +1 or —1, and U is determined only up to a factor V € U(im P) x U(ker P) which
keeps the two eigenspaces im P and ker P invariant. Adding a perturbation ¢ lifts the high
degeneracy of ®, so that the diagonalization of ® + ¢ requires an infinitesimal “rotation”
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K of im P and ker P inside H as well as a “large” rediagonalization ) inside the two
eigenspaces. Modulo higher order terms we may write

D+o = UI+K)V (g + ¢g) VII-K) U
= ¢+ U{Voa V' + [K, Qg } U, (5.16)
with [V, CI)d} =0 and K = —K' infinitesimal,

where ¢4 is a purely diagonal and anti-hermitian fluctuation. Since V depends on ¢ it
should not be absorbed into ¢/. It rather generates all non-diagonal fluctuations inside
im P and ker P, allowing us to rewrite

Voa V= ¢ + [Ae, 6a] with Al = —A, (5.17)

being a generator of U(im P) x U(ker P) and a modified diagonal perturbation ¢/. Rede-
noting also K = e\, with a real and infinitesimal ¢ and a generator A, of the Grassman-
nian, the general fluctuation is parametrized as

¢ = U{¢) + [Ae,da] + [Ao,eDq] } U (5.18)

and decomposed after diagonalizing the background via U into a “radial” part ¢} and
an “angular” part ¢, = [A,any] with A generating U(H®") [42]. For a grassmannian
background all terms have definite hermiticity properties, and we can identify

b = U{dy + [Ne,da) JUT and ¢y = U {[Ao,ePq] U = € [UAUT, @] . (5.19)

We have seen in (BI4l) above that the even and odd fluctuations can be disentangled
in £, Tt is not clear, however, whether the diagonal perturbations can in turn be
separated from the even angular ones in the fluctuation analysis. We will see, though, in
section .Z 2 that this is indeed possible for the special case of diagonal U(1) backgrounds.

5.1.3 0Odd or grassmannian perturbations

As far as stability of BPS configurations is concerned, the odd perturbations are easily
dealt with by a general argument. Since a shift by ¢, keeps ® inside its Grassmannian,
wherein ¢ already minimizes the energy, such a perturbation cannot lower the energy any
further and we can be sure that negative modes are absent here. Therefore, solitons in the
noncommutative grassmannian sigma model are stable, up to possible zero modes. An
obvious zero mode is generated by the translational and rotational symmetry (see section
BZ2). A glance at (B41]) and (B43]) shows that the corresponding infinitesimal operators
A are given by

Mpans = @a' —aa and Ay = iWda, (5.20)

which indeed leads to the annihilation of [Agans, | and [Ay, @] by H as we shall see in

(£94) and (E95).
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From the discussion at the end of section .3 we know that for »>1 there are additional
zero modes inside the Grassmannian, because the multi-soliton moduli spaces are higher-
dimensional. Parametrizing these BPS-compatible perturbation as follows,

D+ py = Uy QUL = O+ [Ag, @] +O(), (5.21)
for Uy = e*s with A]T3 = —Ag, the corresponding Lie-algebra element (EI3)) becomes
= Ul [a,Uy] = (2 —1)a = €[a, Ag] +O(?), (5.22)
and the condition (E4T]) of BPS compatibility to leading order in e reads
la, Ag] |IT) = |T)~., for some rxr matrix 7, . (5.23)

Let us try to find Ay in the abelian case by perturbing around the diagonal BPS
configuration

T) = (o) [1) ... |[r—1)) = 0 =1y — 2 |m)(m]|. (5.24)
m=0
Expanding the generator
Ag = Y Apelm)(f] with Ay = —Agp, (5.25)

it is easy to see that the even part of Ay automatically fulfills (5:23)), and so restrictions
to A, arise only for the odd components. In fact, only the terms with m > r and ¢ <r
in the above sum may violate (B223]), which leads to the conditions

vVm4+1Ay 10 — \/zAmg,l =0, foralm>rand/<r. (5.26)
Since ¢ = 0 yields A,,+10 = 0 as a boundary condition, this hierarchy of equations puts
most components to zero, except for m =r, ..., r+/{ at any fixed ¢ < r. These remaining

r(r+1)/2 components are subject to 7(r—1)/2 equations from (B26]), whose solution

0+5)(¢ ¢ .
Arijorj = \/((Tj:j)(rij i (rill) Ay, forj=1,...,r—1—Cat ({<r-—2 (5.27)

fixes r(r—1)/2 components in terms of the r—1 components appearing on the right hand
side, which therefore are free complex parameters. The r-th free parameter A,,_; does
not enter and is associated with the rigid translation mode i Finally, the ensuing BPS
perturbation (B21]) is found to be

co r—1

b0 = clhn 0] = €3] ( me Im)(E] + A |6)(m]) (5.28)
with A, taken from (B27). To higher orders in €, the BPS-compatibility condition is
not automatically satisfied by our solution (B.27) but this can be repaired by adding
suitable even components to Ay. Our result ties in nicely with the observation of r
complex moduli oy in (4H) whose shifts produce precisely r complex zero modes. For
the simplest non-trivial case of »r = 2, one can also extract these modes by differentiating
(E29) with respect to oy or «s.

3 The rigid rotation mode is absent because @, is spherically symmetric.
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5.1.4 Even or non-grassmannian perturbations

The stability analysis of BPS configurations inside the full noncommutative U(n) sigma
model requires the investigation of the even fluctuations ¢., as well. Here, we have only
partial results to offerf Yet, there is the following general argument which produces an
unstable even fluctuation mode ¢y, (but not an eigenmode) for any noncommutative
multi-soliton ® = 1 — 2P with topological charge ) > 0. For this, consider some other
multi-soliton ® = 1 — 2P which is contained in ® in the sense that

im (P) C im (P) <~ PP = PP =P, (5.29)

We then simply say that P C P. Tt follows that their difference II is the orthogonal
complement of P in im (P),

II=P-PcpP = > =1 and IIP =0 = PII. (5.30)

In particular, we may choose P = 0. For any such pair (P, ]5) there exists a continuous
path

®(s) = *(1-2P) = 1 —2P + (1—e*)IT = 1 —2P — (1+€)I (5.31)

connecting ®(0) = ® = 1 — 2P with ®(r) = & = 1 — 2P. Note that ®(s) interpolates
between two different Grassmannians, touching them only at s = 0 and s = 7. Since we
assumed that ® and ¢ are BPS we know that

E[®] = 87 Q and E[®] = 87Q (5.32)

with Q and Q being the topological charges of P and P, respectively.ﬁ Inserting (B3TI)
into the expression (BZ1]) for the energy and abbreviating 1 — e'* =: p, we compute

E[®(s)] = 87Q — 2n(p+p) Tr([a, P)[IL a'] + [af, P][IL.a])
+ 27 pp Tr([a, ] [T, a']) (5.33)
= 87 Q — 47 (1—cos s) Tr([a, P)[IL, a'] + [a, P)[I1, a] — [a, T][I1, a])
where the two traces could be combined due to the relation
p+p = pp = 2(1—coss). (5.34)

Luckily, we do not need to evaluate the traces above. Knowing that E[®(r)] = 8@ we
infer that the last trace in (B33) must be equal to @ — @ and hence

E[®(s)] = 871Q — 4n(1—coss)(Q — Q) = 87 (Q cos® £ + Q sin? %)

) (5.35)
= 81Q — 271(Q — Q) s* + O(s?) .

4Even for the commutative sigma model this is an open problem [T33].
SNote that @ need not be smaller than () when 7(P) is infinite.
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Evidently, for () > 0 we can always lower the energy of a given BPS configuration by
applying an even perturbation ¢ne; = —iell towards a BPS solution with smaller topo-
logical charge Q@ < Q. The higher the charge of P the more such modes are present.
Yet, they are not independent of one another but rather span a cone extending from the
background, as we shall see in examples below. In fact, there is no reason to expect any of
these unstable fluctuations to represent an eigenmode of the Hessian, and in general they
do not. Nevertheless, their occurrence again demonstrates that there must be (at least)
one negative eigenvalue of H, and for diagonal U(1) BPS backgrounds we shall prove in
section that there is exactly one. The only stable BPS solutions are therefore the
“vacua” defined by P’ = 0 in (f20) and based on a constant U(n) projector P. This leaves
no stable solutions in the abelian case besides ® = 1, even though Derrick’s theorem does
not forbid them in this setting.

In addition to the unstable mode, there exist also a number of non-grassmannian zero
modes around each BPS configuration, which generate nearby non-BPS solutions to the
equation of motion. This will become explicit in the examples presented below.

5.2  PERTURBATIONS OF U(1) BACKGROUNDS

After these general remarks we will in this section concentrate on the stability analysis of
abelian background solutions where, for the sake of simplicity, these are further specialized
to diagonal U(1) backgrounds ® as given, up to an irrelevant phase, by (EZd). The
solutions considered are thus not necessarily BPS and furthermore, parametrized by a
diagonal projector with finite dimensional image.

5.2.1 Invariant subspaces

Using (B.0) it is easy to see that the Hessian H maps any off-diagonal into itself. Let us
parametrize the k-th upper diagonal Dy as

Sty = D figym |m)(m+k|  with pugy, € C, for k=0,1,2,... . (5.36)
m=0

The hermiticity properties (BI1]) of the perturbations demand that we combine D and
D;i into a subspace & of the k-th upper plus lower diagonals by defining

= {ow | ow = ¢(+k)—q’¢z+k)‘1>}, implying Q%C) = —P¢p®. (5.37)

The direct sum of all & is the full admissible tangent space to U(H), and we may thus
decompose

= > 6w = ZZ{ o [ YA F figom I k) (ml }, - (5.38)

k=0 m=0
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with the sign depending on whether the component is even or odd. Since H maps &
into itself, the bilinear form for the quadratic energy correction defined in (B3] is block-
diagonal on the set of &,

2r Tr{oly, H b} ~ O, (5.39)

which implies the factorization

E? @, 6m] = Sp EP (@, 6w - (5.40)

In other words, & forms an H-invariant subspace for each value of k. In particular, &
is the space of admissible skew-hermitian diagonal matrices, and the purely imaginary
diagonal fluctuations ¢y = ¢4 € & can be considered on their own.

5.2.2 Results for diagonal U(1) backgrounds

Apparently, for diagonal U(1) backgrounds it suffices to study the second variation form
E®[®,.] on each subspace & (k > 0) separately. Let us give more explicit formulae for
the restriction of E®[®, ] to these subspaces. To this end, we denote the non-zero entries
of ® by §; :=;; (j =0,1,2,...). We have ¢; = %1 for each j, and the set

= {7 20[ 641 # 45} (5.41)

is finite. Then, a straightforward calculation shows that the restriction of E®)[®, ] to

& = {b© | do) =1)_ ém|m)(m| with ¢,, € R} (5.42)
m=0
is given by
D, o) Z (m+1) (st — Om)* — QZ J+1) ¢j+1 + ¢3) : (5.43)
m=0 JjeJ

The formula for E®[®, ] on &~ is more complicated. Considering a fixed k-th upper
diagonal Dy, as parametrized in (B36), we first evaluate (suppressing the subscript (k))

Tr{¢J(r+k) Aoy} = Z [Vm+1 pp 1 — Vm4k+1 ,um|2
m=0

. (5.44)
= kol +3 Z Ry (1)
m=0
with
R(p) = VA1 pmgr — Vimtk+1 o |* 4 [VmA-k+1 g — Vmt1 |
= (VmAk+1L = VmtD)” ([ + [ml?) (5.45)

+ 2VmAk IV mAL g1 — o]
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Armed with this expressions, we compute the second variation on &;,. To state the out-
come, it is useful to introduce the index sets

J—k = {j—keNyljeJ} and A = (JUT-k)\JNJ—FK), (5.46)

i.e. Ais the symmetric difference of J and J—k. For ¢ € & a direct calculation results
in

=EP@ 0w] = kluol® + D Ri(w) + Y (2i+2+k) (I + [ ]?) (5.47)
JENQ\A jEA
=2 GO (Il + lal®) = 2> GHh+Dlu® = 2 ) G+k) sl
jeJ jeJ—k jeEJ—k+1

This expression simplifies when k is greater than the largest element of J+1. Then
the sets J—k and J—k+1 are empty, so A = J, and (B41) takes the form

= EP@,0w] = kluol® + Y Ri(w) + kD (Il + il - (5.48)

JENO\J jeJ

One sees that for each j € J the corresponding coefficient y; decouples from all successive
coefficients f,,~;. Since the elements of J signify the boundaries between even and odd
fluctuations in the string of ju,,, this observation confirms the decomposition (E14)) of £®?)
into an even and odd part also after the restriction to c‘fkﬁ Furthermore, we note that
R;(p) > 0 unless p; = p1;41 = 0, which makes it obvious from the expression (B48) that
the quadratic form E® is strictly positive on each & with k& > max;c;(j+1). For the
remaining & we have to work a little harder.

5.2.3 Results for diagonal U(1) BPS backgrounds

The idea is to pursue the reduction of E® to a sum of squares as in the previous section
whenever possible. For diagonal BPS solutions (F46])

—1 f
orm<r  (5.49)
+1 form>r

r—1 oo
¢, =1 — 22|m)<m| = Zém\m><m\ with 6, = {
m=0 m=0

this strategy turns out to be successful at all £ > 1 but breaks down at £ = 0. We note
that now J = {r—1}, which implies a possible distinction of cases: “very off-diagonal”
perturbations have k& > r, “slightly off-diagonal” perturbations occur for 1 < k£ < r, and
diagonal perturbations mean k£ = 0, to be discussed last. Let us try to visualize this in
matrix form. The solution @, is given as

—1

o, = ~1 r—1, (5.50)

6 For |J| > 1 the even and/or odd part of E(?) is split further. In total, £(2) decomposes into at least
|J]4+1 blocks.
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whereas the fluctuations decompose according to

very off-diagonal perturbations o = T,
\\
slightly off-diagonal perturbations o = k:g T, (5.51)
. . ] T
diagonal perturbations o = .

It will also be instructive to express the Hessian on the space & in matrix form,
_ k
E®[@,, 60 = 2w Y fiu Hitd e (5.52)
m, =0
defining an infinite-dimensional matrix H® = (Hffg) )-
Very off-diagonal perturbations

Since J consists just of one element, at k > r the matrix H® splits into two parts only,
of which the odd one has finite size r. More explicitly,

k k
HY = H((;r)(P) D HlEeBP (5.53)
with
k+1  —/1(k+1)
~VI+)  k+3  —2(k+2)
o ~2042) k45
iHGr(P) =
2r+k—3 —/(r—1)(r+k—1)
—/(r=1)(r+k=1) 2r+k—-1—r
(5.54)
2r+k+1—r —/(r4+1)(r+k+1)
. —+/ (r+1)(r+k+1) 2r+k+3 —/ (r+2)(r+k+2)
VL p = | e

—/(r+2)(r+k+2) 2r+k+5
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where the boldface contributions r disturb the systematics and originate from the ®A®T
term in the Hessian. The previous paragraph asserts strict positivity of H for k& > r. Due

to the finiteness of Hg?( P)s the Hessian on &, features precisely r positive eigenvalueﬂ

in its spectrum. We shall argue below that the infinite part Hlile? p contributes a purely
continuous spectrum R, for any k. Thus, the above eigenvalues are not isolated but
embedded in the continuum.

It is instructive to look at the edge of the continuum. The non-normalizable zero mode
of Hg?( P 18 explicitly given by

sero \/(r+k+1)(r+k+2)-~-(r+k+m)
Bram = Hr (r+1)(r+2) - - - (r+m)

(5.56)

B (r+m+1)(r+m+2) - - - (r+m+k)
- (r+1)(r+2) - (r+k) ’

which grows like m*/? when m = 0,1,2,... gets large. Being unbounded for k > 0 this
infinite vector does not yield an admissible perturbation of ®,, however, since §?°F is
infinite.

Slightly off-diagonal perturbations

For each value of k£ in the range 1 < k < r we already established in section the
existence of an odd complex normalizable zero mode connected with a moduli. Neverthe-
less, as we will show now, E?[®,, b)) remains positive for 1 < k < r albeit not strictly
so. In order to simplify (E41) we make use of the following property for R;(x) as defined

in (B45):
-1 -1
S ORi(u) = klwl = kluml® + 2D Wit e — ik )
j=m j=m

(5.57)

-1
= kluml® = klwl® + 2 WVi+kt1po — i+l
j=m

Here, by definition, all integers are non-negative and all sums are taken to vanish if m > [.
The two equations above are easily proved by induction over [, starting from the trivial
case [ = m. We now employ the algebraic identities (B01) to rewrite (B47) for 1 < k <r
and obtain

o) r—k—2
BP0 = Elwl” + D R+ 2> Wit pe — itk
j=r Jj=0

(5.58)

r—2
+ 2 Z |V i+k+1 e — i1 ),

j=r—k

" meaning that the corresponding modes are normalizable eigenvectors, i.e. of Hilbert-Schmidt class
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which is indeed positive semi-definite. We observe that the even part of £() now consists
of two disjoint pieces, containing {yo, ..., pr—k—1} and {y;>,}, which are separated by the
odd perturbations {ft, g, ..., i,—1}. If the right-hand side of (58] is equal to zero, then
all components p;>, must vanish because each R; is a strictly positive quadratic form of
t; and 1j11. In contrast, the remaining coefficients ;. need not vanish at the zero set of
E®[®,, o). In order to find the zero modes of the Hessian, it is convenient to visualize
it again in matrix form, namely

H® = H)o ® HGp) © Hip . (5.59)

1

where the blocks have sizes r—k, k, and oo, respectively. From (E58) we extract

k+1  —\/1(k+1)
~V1(k+1) k43  —\/2(k+2)
~2(k+2) k+5

k
%Hi(m)P = . . . (5.60)

2r—k—3 —\/(r—k—1)(r—1)
—/(r=k=1)(r=1) 2r—k—1—r

% —k+1l—r —/r—ktD)(r+1)
—/(r—k+1)(r+1) 2r—k+3
%H((}l?(P) = (5.61)

2+ k—3 —/(r—1)(r+k—1)
—/(r=D)(r+k=1) 2r+k—1—vr

and Hﬁfﬁ p being identical to the matrix in (5H). The extreme cases are Hélr)( py = (0)
and Hi(r;;}) = (0), while Hi(r;)P is empty.

We already know that ngle? p is strictly positive definite. As claimed earlier, its spec-
trum is R, and purely continuous, with a non-normalizable zero mode given by (E56).
Being finite-dimensional, the other two blocks jointly yield again just » non-negative and
non-isolated proper eigenvalues for fixed k£ > 0. Interestingly, two of these eigenvalues
are now zero and give us one even and one odd complex normalizable zero mode. With
Bk, & € C the latter take the following form4

8 The even zero mode is, of course, absent for k = r.
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VIV2VE - r—k—2vr—k—1
VEFIV2V3 - Vr—k—2Vr—k—1
HY o (e = e | V5T E+2V3-- ':‘/T_k_wr_k_l , (5.62)
VEHIVEF2VE+3 - /r=2r—k—1
VEFIVER2VE+S - /r—2¢/r—1

VT2 +3 - r+k—2vr+k—1
Vr—k+1r 2 +3 - - - r+k—2vr+k—1
Vr—k+1Vr—k+2vr+3 - - /r+k—2vr+k—1

J%)

apy (Moo = O (5.63)

Vr—k+1/r—k+2v/r—k+3 - - /r=2/r+k—1
Vr—k+1Vr—k+2vr—k+3 - /r—2y/r—1

Altogether, there are 2r—2 real zero modes in Hj, p and 2r real zero modes in Hg,(p).
Identifying (); = Ajrt; = —As;j, the latter precisely agree with the BPS moduli found
in (B21). The former zero modes correspond to flat directions outside the Grassmannian.
Some of these generate nearby non-diagonal non-BPS solutions and are therefore non-
BPS-moduli. In contrast, the remaining ones are not moduli but arise from the fact that
E® ]U(im P) is indefinite near the saddle point given by ®, and thus separate the hill from
the valley.

Diagonal perturbations

Next, we discuss the diagonal or radial perturbations ¢ € & (see (E43)). The trans-
formation of

S EQ[@,, ¢0)) = Y (m+1) (b1 — bm)® = 2r (9] + ¢2) (5.64)
m=0

to a sum of squares is much easier than that of (B47), but the result shows one minus in
the signature:

S EQD,, 6] = =1 (¢ +6,)> + > (G+L) (¢ — 65)°. (5.65)

520, j#r—1

However, we can use this expression to conclude that the second variation form E(?)
cannot have more than one negative mode on &,.

Proposition 5.1

Let V C &, be a real vector subspace such that E®[Phi,¢] < 0 for all nonzero ¢ € V.
Then V' is at most one-dimensional. In other words, one cannot find linearly indepen-
dent vectors ¢, € & such that E®)[®,.] takes negative values on each non-zero linear
combination of ¢ and ).
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Proof. A necessary and sufficient condition for a pair of linearly independent vectors
¢, € & to span a negative subspace for E?)(.) := E@[®, ] is that

EX@) < 0, EXW) < 0 and B(¢,)?—ED(Q)ED () < 0, (5.66)

where B(¢,¢) := H{E®(¢p+1¢) — E®(¢) — EP ()} is the corresponding bilinear form.
If ¢, € & satisfy these inequalities, then the same holds for their truncations (that is,
vectors obtained by replacing all the coordinates ¢;, v; with j > n by zero) if n is large
enough. Thus, we may assume the existence of n such that ¢; = ¢; = 0 for j > n.
But the restriction of E® to the space R" of all vectors ¢ = (¢, ¢1, ..., Pn_1,0,0,...)
has signature (1,n—1) according to (B6H) and, therefore, this space contains no two-
dimensional negative subspaces. |

For an alternative visualization, we write the second-order fluctuation form as
0
EQ[@,, ¢)] = 27 Y ém Hyp b0 , (5.67)
m, =0
where the matrix entries Hﬁf@ can be extracted from (B6) or from (B6H) as

HY = 2m+1— 26,1 — 2r0m) Ome — MO i1 — (MA1) Spsrs - (5.68)

1
21 m

In matrix form this reads for m, ¢ € Ng as

1 -1
-1 3 =2
(Hr(gg) = —2 5o —3 - 27’(6m,r715£,r71 + 5m,r5€,r)
-3 7 -
(5.69)
2r—3 —r+l
_ -r+1 -1 -
-r +1 —r-1
—r—1 2r+3

In distinction to the earlier cases, this infinite Jacobian (i.e. tri-diagonal) matrix does not
split. We shall compute its spectrum in a moment. Prior to this, some observations can
already be made.

First of all, the unique zero mode of H® is found from (5358]) for £ = 0 and given by
(70 € R)

sero = 170 D — m)zero — —L...,=L+1,+1,...), 5.70
¢ o (¢m) Yo ( ) ( )

r times
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which clearly generates the global phase rotation symmetry ® — e°® already noted
in (B39) and below. In contrast to the zero modes in o depicted in (B5H6), (EE2)
and (B63)), Psero is not Hilbert-Schmidt but bounded. Although it does not belong to a
proper zero eigenvalue of the Hessian, ¢,e0, being proportional to ®,., still meets all our
requirements for an admissible perturbation.

In order to identify unstable modes, we turn on all diagonal perturbations in a par-
ticular manner suggested by (B31),

d({an)) = 1 z_:(eio"”+1) ) (m] + Y (€ —1) [m) (m] . (5.71)

The energy of this configuration is easily calculated to be

é E({am}) = sin? % 4+ (7”—1) sin2 %

(5.72)
+ 7 cos? Gl 4 (r41) sin? Gl L

with a single cos? appearing only in the indicated place. Expanding up to second order
in the real parameters a,, and putting «,,, = 0 for m > r, we find that

HO ~0 — (ao—a1)2 + 2(a1—a2)2 4o (r—l)(ar_z—ar_l)Q (5.73)
—7’04371 <0, .

which determines a convex cone in the r-dimensional restricted fluctuation space. The
most strongly negative mode is given by (o € R)

bneg = —iaP, <= (bm)neg = —(1,...,1,0,0,...) . (5.74)

r times

Comparison with (B3H) reveals that following this mode one arrives at ® = 1. More
generally,
W) = —a(0,....0,1,...,1,0,0,... 5.75
(6m) ( ) (5.75)
7times (r—r) times

perturbs in the direction of ® = 1 —2P. Nevertheless, none of these modes are eigenvec-
tors of the matrix H©,

It is instructive to confirm these assertions numerically. To this end, we truncate the
matrix (H,E,?}) at some cut-off value muyax = fmax and diagonalize the resulting finite-
dimensional matrix (see also the corresponding Mathematica code in appendix [AJl). The
truncation at values mpa.x < 7 only allows for positive eigenvalues, whereas for values
Mmax = T We obtain exactly one negative eigenvalue. Its numerical value depends roughly
linearly on r and converges very quickly with increasing cut-off as can be seen from the

following graphs.
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Figure 5.1: Possible eigenvalues A versus the cut-off parameter my,,, for r = 5 and r = 20.

Explicit spectrum of the Hessian

The spectrum of the restriction H*) = A; — (®,Ad,); of the Hessian H to &, can in
this simple case and under an additional assumptions actually be explicitly calculated by
passing to a basis of Laguerre polynomials. The following considerations are based on
spectral theory and require all vectors to be in [y, i.e. all operators to be Hilbert-Schmidt.

Let us first consider &. We use the following property of the noncommutative Lapla-
cian —Aq: sending each basis vector |m) of H to the m-th Laguerre polynomial L,,(z),
we get a unitary map U : H — L?(R, e ®dz) such that UAU~! is just the operator of
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multiplication by z:
T Ly(x) = —m Ly1(z) + (2m+1) Ly () — (m~+1) Ly () (5.76)

which is to be compared with (E.6d). Hence, in the basis of the Laguerre polynomials,
the eigenvalue equation H®|¢) = \|¢) is rewritten in terms of f :=U|¢) as

@ f(x) = 2r((f, L) Le—a(2) + (f, Le) L (@) = A f(z), (5.77)

where
(f.g) = /R dz f(z) glx) o= (5.78)

Clearly, a function f € L?*(R,,e *dz) satisfies (B77) if and only if it is given by

coLy_1(x) + 1L ()

= 5.79
() 2t (579
and the constant coefficients cg, c; € R satisfy the linear system
1
(Ir—l,r—l()\) - 5) co + ]r—l,r()\) cg =0
) (5.80)
and [7-77-71()\) Co —+ ([T,T‘<)\> - 2—) T = 0 y
r
which is obtained simply by inserting (5.79) into (E77). Here we use the notation
o —x d
Lu(\) = / L) Li(x), for K1>0. (5.81)
0 xr — A
The integrals (BXT]) are simple, though not elementary, special functions of A. Indeed,
Ioo(N) is a version of the integral logarithm: Ipg(\) = —e *li(et) for all A < 0, where
li(z) :== [; L. On the other hand, using the recursion relations
(k+1) Ligy1(z) = (2k+1—x) Ly(x) — kLp_1(x) (5.82)

one can show by induction over k and [ that all functions I ;(\) are expressed in terms
Of [00()\)1

where Ay, and By are polynomials in A of degree at most k+[. Hence, the determinant

[rfl,rfl()\) - % [rfl,r<)\>
[r,rfl()\) [r,r<)\) — =

2r

Fr()) = (5.84)

of the linear system (E80) is a known special function of A, whose zeros A, on the negative
semiaxis are precisely the negative eigenvalues of the Hessian operator H()[®,] for the
diagonal BPS background of rank 7.
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One can now prove the existence of negative eigenvalues. By verifying that the real
numbers F,.(—o00) := limy_,_ F,(\) and F,.(0) := lim_o_ F,(\) have different signs, we
can conclude that F,.()\) possesses at least one zero on the negative semiaxis. For example,
take r = 1. In this case we find

In(\) = Lio(\) = (1=-MI(\) — 1

(5.85)
and I;;(\) = (1-M\)2Ipo(\) + A —1,
from which it follows that
2F(N) = =X — 1= NI(N). (5.86)
Passing to the limit under the integral sign, we see that Fj(—oo) = 1 and F;(0) = —1.

This proves the existence of a negative eigenvalue of H©[®].

Can H®[®,] also have non-negative eigenvalues? To disprove this possibility, we
consider the eigenvalue equation (B.77) and show that it admits only the trivial solution
f(z) =0if A > 0. Indeed, for non-negative A, the solution (E79) is not square-integrable
unless

COerl()\) +61L7«()\) = O, (587)
which implies
co = c¢L,(\) and ¢ = —cL,_1(\) (5.88)
for some constant c. Therefore, the solution (B79) is completely determined as
LN L1 (x) = L1\ L, (x —
fla) = o V@ 2 L W) DIICIIEINNCE

via the Christoffel-Darboux formula [54]. It follows that f is orthogonal to L,. Inserting
(f, L,) = 0into (E77), we learn that the polynomial (x—\) f(z) is proportional to L, 1 (z).
But then the first equality in (5:89) demands that L, ;(\) = 0, constraining \. Feeding
this into the second expression for f in (B.8Y) we see that the sum runs to r—2 only,
implying that f is orthogonal to L,_;, as well. This finally simplifies the eigenvalue
equation (B77) to the one for Ay, namely

xf(x) = XNf(x), implying f(z) = 0, (5.90)

as required. Hence, the non-negative part of the spectrum of H® is purely continuous.

A similar analysis can be applied to the Hessian on &;~(. In this case, the appropriate
polynomials are the normalized (generalized) Laguerre polynomials L*  which form an

orthonormal basis for L?(R., , z*e~*dx). One rediscovers the r proper eigenvalues as zeroes
of the characteristic polynomial for H -(fl)PGBH g?( P)s accompanied by a continuous spectrum

1

covering the positive semiaxis for ngle? p, as claimed earlier.

If we do not care for resolving non-isolated eigenvalues, we may also infer the spectrum
of the Hessian H from the classical Weyl theorem (see [66], Theorem IV.5.35 and [104],
§ XIIT.4, Example 3).
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Proposition 5.2
Let & = &, be the diagonal BPS solution of rank r > 0. Then

spectrum (H|[®,]) = {\.} U [0,+00) , (5.91)

where )\, is a negative eigenvalue of multiplicity 1 and [0, +00) is the essential spectrum.ﬁ
Furthermore, we have —2r < \,. < 0.

Proof. Weyl’s theorem asserts that the essential spectrum is preserved under compact
perturbations. The essential spectrum of A (on all subspaces &) is known to be equal
to [0, +00). This follows, for example, from the explicit diagonalization of Ay in terms
of the Laguerre polynomials, as indicated above. Since the perturbation ®,A®, is finite-
dimensional, Weyl’s theorem applies to show that the essential spectrum of H is also equal
to [0, +00). Although we have explicitly shown that H*) is positive semi-definite for k>0,
the essential spectrum R, cannot exhaust the whole spectrum because the operator H©)
is not positive semi-definite on &. Indeed, (E65) shows that the quadratic form E®
is negative on many finite vectors. Hence, H® must have negative eigenvalues of finite
multiplicity. The above proposition implies that there can be only one such eigenvalue,
and its multiplicity must be equal to 1. This proves (B.91]) and the inequality A, < 0. The
estimate —2r < A, follows because the norm of the operator (®,A®,) is equal to 2r, so
H[®,]+2r1y > Aisnon-negative definite and hence cannot have negative eigenvalues. W

5.2.4 Results for non-diagonal U(1) BPS backgrounds

Even though any non-diagonal BPS background ® can be reached from a diagonal one by
a unitary transformation &/ which does not change the value of the energy, the fluctuation
problem will get modified under such a transformation because

Uald' = f(a,a’) and UadUT = fi(a,a’) (5.92)

will in general not have an action as simple as a and a' in the original oscillator basis.
The exceptions are the symmetry transformations, of which only the rigid translations
D(a) (B41) and rotations R(V) ([B43) keep ® within the Grassmannian. To be specific,

we recall that
D(a)'aD(a) = a+a = E[D(a)®D(a)l] = E[P], (5.9%)
RW) aRW) = e’a — E[R®®RW] = E[®]. '

The invariance of the spectrum of H under translations (or rotations) can also be seen
directly:

Ho¢, = ¢,¢0, and A(DfD') = D(Af)D! (5.94)

9 We recall that the essential spectrum of a self-adjoint operator is the whole spectrum minus all
isolated eigenvalues of finite multiplicity. The multiplicity of an eigenvalue is the dimension of the
corresponding eigenspace.
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imply
H'¢), = [A— (DPD")A(DPD")|Dp, D' = D (|[A - PAD|$,)D' = €,¢, . (5.95)

n

More general unitary transformations will not simply commute with the action of A and
thus change the spectrum of H.

In the rank-one BPS situation, any solution is a translation of ®;, and hence our
previous discussion of fluctuations around diagonal U(1) BPS backgrounds completely
covers that case. This is no longer true for higher-rank BPS backgrounds. For a complete
stability analysis of abelian r-solitons it is therefore necessary to investigate separately the
spectrum of H around each soliton configuration ({Z4H) based on r coherent states, whose
center of mass may be chosen to be the origin. Since the background holomorphically
depends on r parameters aq, ..., «, and passes to ¢, when all parameters go to zero, one
may hope to show that the spectrum of H does not change qualitatively when & varies
inside the rank-r moduli space.

5.3 PERTURBATIONS OF U(2) BACKGROUNDS

In this section we exemplify the analysis in the nonabelian case by investigating the be-
havior of a simple U(2) BPS solution under perturbations concluding that the fluctuation
analysis reduces to the U(1) case discussed in the previous section.

5.3.1 Results for diagonal U(2) BPS backgrounds

Consider a nonabelian BPS projector of the diagonal type considered in (EL3):
P = 1y @ Py, where Py = > |[k)(k|. (5.96)
Clearly this describes a BPS solution
Ly 12 _
¢ = (i(;) i(li)) - ( E]IH 1y _02PQ> (5.97)

of energy £ = 8m(). Inserting this into the expression (B3) for the quadratic energy
correction E® one obtains

E@)[q)’(b] = 27rTr{<;5T Ag — @' (PADT) ¢}
= 2 Te{o" (§9) Ap — o' (§9)2Q(IQ-1)(Q-1] +1Q)(QI) ¢} .

Since the action of the Hessian is obviously diagonal, we find that

(5.98)

LD (12) , el i
¢ = <¢<2,1> ¢<z,z>) = EQ®,¢] = > E@[@0C) gD (5.99)

ij=1
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which reduces the fluctuation analysis to a collection of abelian cases. For the case at
hand, the Hessian in the (1,.) sectors is given by the Laplacian and thus non-negative,
while in each (2,.) sector it is identical to the Hessian for the abelian rank-() diagonal
BPS case. Hence, the relevant results of the previous section carry over completely.

This mechanism extends to any diagonal U(2) background (not necessarily BPS),
mapping the U(2) fluctuation spectrum to a collection of fluctuation spectra around cor-
responding diagonal U(1) configurations. The fluctuation problem around non-diagonal
backgrounds, in contrast, is not easily reduced to an abelian one, except when the back-
ground is related to a diagonal one by a rigid symmetry, as defined in (B39), (841 and
BZ3). Only a small part of the moduli, however, is generated by rigid symmetries, as
our example of U (i) in (ELZY) demonstrates even for ) = 1. Finally, it is straightforward
to extend these considerations to the general U(n) case.

5.4 SUMMARY ON FLUCTUATION ANALYSIS

Concluding the fluctuation analysis carried out in this chapter, we summarize what has
been achieved:

Starting from grassmannian configurations we found that thanks to the BPS property
(anti-)solitons within the grassmannian sigma model are always stable. As in the commu-
tative case, their embedding into a unitary sigma model renders them unstable, however,
as there always exists one negative eigenvalue of the Hessian which triggers a decay to
the vacuum configuration.

Apart from these general statements we obtained explicit and complete results for
abelian and nonabelian r-soliton configurations which are diagonal in the oscillator basis
or related to such by global symmetry. For this case, we proved that the spectrum of
the Hessian consists of the essential spectrum [0, 00) and an eigenvalue A, of multiplicity
one with —2r < )\, < 0. This assertion was confirmed numerically, and the value of A,
was given as a zero of a particular function composed of monomials in A and the special
function e *li(e).

Furthermore, the complete set of zero modes of the Hessian was identified. Each
abelian diagonal r-soliton background is characterized by a diagonal projector P of rank r,
whose image and kernel trigger a decomposition of the space of fluctuations into three in-
variant subspaces, namely u(im P), u(ker P) and d Gr(P). In addition, every side diagonal
together with its transpose is separately invariant under the action of the Hessian. This
leads to a particular distribution of the admissible zero modes of the Hessian, displayed
here for the example of r = 4:
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dGr(P) o p

N ker P
d Gr(P) N\

Figure 5.2: Admissible zero modes for abelian diagonal rank 4 soliton.

The double line denotes the single negative eigenvector, each solid diagonal segment
represents a real normalizable zero mode, the dashed line depicts an admissible non-
normalizable zero mode, and empty areas do not contain admissible zero modes. In addi-
tion, each side diagonal features a non-admissible zero mode at the edge of the continuous
part [0, 00) of the spectrum.

For visualization we plot the complete spectrum of the Hessian at » = 4 (cut off at

size Mmax = 30) for each invariant subspace & (7 (boxes), EmF (stars), £k F (crosses)
and & (circles), up to k = 6:
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Figure 5.3: Eigenvalues A of the cut-off Hessian (size 30) for () = 4 in subspaces &.

Since most soliton moduli are not associated with global symmetries, our explicit
results for diagonal backgrounds do not obviously extend to generic (non-diagonal) back-
grounds. We have not been able to compute the fluctuation spectrum across the entire
soliton moduli space. The only exception is the abelian single-soliton solution which
always is a translation of the diagonal configuration and therefore fully covered by our
analysis. Already for the case of two U(1) solitons, the unitary transformation which
changes their distance in the noncommutative plane is only partially known.

This leads us to a number of unsolved problems. The most pressing one seems to be
the extension of our fluctuation analysis to non-diagonal backgrounds. Next, we saw in
section L4l that following the even zero modes one can find new non-BPS solutions whose
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further study certainly deserves interest. Another interesting aspect is the existence of
infinite-rank abelian projectors, i.e. via an infinite array of coherent states, associated with
BPS solutions of infinite energy. Finally, it is worthwhile to investigate the commutative
limit of the Hessian and its spectrum.






CHAPTER 6

TIME-DEPENDENT WARD MODEL SOLITONS

In this chapter we review results on time-dependent solutions to the Ward model.
These will be needed for the comparison with the adiabatic approach presented in the fol-
lowing chapter. The presented material is based on |73, [74}, 127, [76] and, to a great extent,
also applies to the commutative case. We will therefore refrain from denoting derivatives
as commutators and rather stick to the formulation in the star-product formalism, where
the symbols are the same as in the commutative settingﬂ

After reviewing the Lax-pair formulation of the Ward model we proceed by presenting
boosted static solitons which are given by lumps moving with a constant velocity and
hence feature no scattering. To obtain more complex solutions, the dressing approach
as an effective means to generate time-dependent multi-solitons is then introduced. The
examples to be given are mainly concerned with the abelian case in consideration of
the comparison with the adiabatic approach. The discussion is finally followed by an
exposition of the scattering properties for these multi-solitons.

6.1 LINEAR SYSTEM AND SIMPLE SOLUTIONS

6.1.1 Lax-pair formulation of the Ward model

To prove our earlier claim that the equation of motion ([BIR]) of the Ward model does
indeed arise as compatibility condition for some linear system, we introduce an auxiliary
nxn matrix ¢ depending on the coordinates t,z,y and a so-called spectral parameter
¢ € CU {0} subject to the reality condition

vt 2y, Q) Ut 2,y,¢) = 1. (6.1)

Furthermore, we may impose some asymptotic conditions [63] on the field v of which we
will need '

lim (t2,9.¢) = @7+ 0(C), (6.2)

where ¢ is a U(n)-valued field. This asymptotic condition is used to connect ¢ with the
Ward model solutions.

Consider now the linear systems of equations

Alt,z,y)\ ~
(B(t7x’:;)) - _w(taxﬁ%C) L(C) wT<t7xuy>C>a (63)

!For simplicitly we also leave out the star-symbol for the multiplication.
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where

R Cazv_aert . (<—1>az+(g+l>ag—at
L(O o <_<ayt_al“) B <_i(C_i)az+i(C+i>az+Cat)’ (6'4)

and the matrices A, B on the left hand side are of the same type as 1 but independent of
the spectral parameter ( |73, [74]. In fact, this linear system can be obtained from the Lax
pair of the self-dual Yang-Mills equation on R*? [62, 63] by gauge-fixing and imposing
the condition 031 = 0. The compatibility condition for the linear system (B3] reads

9B+09,4A =0 and 0,A—09,,B—[A B] =0, (6.5)
of which, making an ansatz of the formfl
A=90,,06 and B = ¢'0,0 (6.6)

the second equation is automatically satisfied whereas the first one is transformed to the
equation of motion of the Ward model ([BI8]). This shows that it is indeed induced by a
Lax-pair formulation and thus, according to the given definition, this model is integrable,
as claimed. Reading this statement a different way we see that from each solution 1) of
the linear system (63) with some A and B we can infer a solution ® to the Ward model
equation of motion via (62) and (G.6). However, it is not possible to simply prescribe
some A and B since they depend on the solution ® themselves.

6.1.2 Dressing approach

The integrability of the Ward model entails some powerful techniques of constructing
solutions to the linear system given above and thus to the equation of motion to the
Ward model. In this context the dressing approach will be of great importance to us
since it provides genuine multi-soliton solutions with relative velocity. It is a recursive
procedure to generate new solutions from a given seed solution to (E3]) by an ansatz of
the form

Yt z,y,0) = x(tz,y,0) vt ,y,0), (6.7)

where ¢ is a solution to the linear system (E3) for some left hand side (A, B). The
dressing factor x is, for our purposes, restricted to the simple one pole form
Wi
X = 1+——P, (6.8)
C—p
for p € C\R and some hermitian projector P [[3]. Compare also [I31] 132, 33| for a more
general exposition of this approach.

ZNote that this ansatz is compatible with the asymptotic condition ([E2) and that it implies algebra-
valued A and B.
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Inserting this ansatz into the linear system (B3] yields together with the reality con-

dition (61])
(i) - ~weomo{(fz) ncfensso. o

where A and B are of the same type as A and B. Note that the left hand sides of ([B3)
and the equation above are independent of ¢ and that therefore the (-dependence on the
right hand sides of these equations has to drop out.

6.1.3 Simple time-dependent solutions and co-moving coordinates

To exemplify the discussion of the preceding section, we give an easy example for the
construction of a time-dependent solution. Consider a seed solution vy := 1, which solves
the linear system (E3]) with Ag = By = 0 and the ansatz (EX) for the dressing factor.
The new solution 1) = x v is then constructed by expanding the right-hand side of (£9)
into a Laurent-series around ¢ = ,aﬁ and demanding the vanishing of poles to all orders.
This yields the BPS-type conditions

(1—P)(7i0, —9y)P = 0 and (1 — P)(7id,_+3,)P = 0, (6.10)

for the projector P. The ensuing Ward model solution is then found via the asymptotic
condition (62) as

o =1-""Fp, (6.11)

which is similar in form to a hermitian static solution except for the deviation from 2
of the factor in front of P. This renders the solution non-grassmannian in general. An
analysis of (E11) [73] [76] reveals that each finite-rank projector P satisfying (GI0) in this
way yields a solution whose energy density is localized with peak moving with constant
velocity v given by

§ = (o) = — (L ] (6.12)
Y pi 41" pp+1) 7

with inverse given by

N . 1_—»
_v +1\/2 U cC

1—vy

\R. (6.13)

This solution is thus interpreted as moving lump in the Moyal plane whose total energy
E[®] reads

E[®] = —8rtrP = (1—%v§+%v§+...) STtrP, (6.14)

3This is only one possibility, but in this case a very useful one.
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making obvious the Lorentz symmetry breaking.
Since the solutions feature a constant velocity, it is possible to shift to their rest frame

via a linear coordinate transformation (z,y,t) — (w,w, s) given by [[76]

w=v[§tE+d) + dy(-1) +al,

==

0= 73+ d) + by 1) o] (615
and s = ...,

where v € C is to be chosen later and the shifted time-coordinate s is of no relevance
for the solutions considered. Using the commutation relations [z,y], =16 we find for the
new coordinates the star-commutation relation

‘ V1—vZ—v2
0 2i0vy Y—" Y (6.16)

[w7 w]* = 1 _ U;

Note that the shift (G13) is mediated by a unitary transformation U (u, t) effecting a boost
with velocity (E12).

Furthermore, the condition (6.I0) is given in the rest frame as
(1-P)0gP =0 and (L—-P)o,P = 0, (6.17)

which is nothing but the BPS equation (B29) in co-moving coordinates if the solution is
static in this frame, i.e. ;P = 0, and we will therefore call these solutions solitons, as
well. The generic r-soliton moving with velocity implied by p is thus parametrized by the
projector

P(t) = U(p,t) PoU (1, t) (6.18)

where P, is the generic static BPS solution (BZ5]) expressed, here, in the star-product
picture. The static situation is recovered for the choice y = —i which implies v = 0 and
w=v(r+1iy). To give an example, the simple rank 1 moving soliton computes to [[3]

it z,y) = 1— 2B K emiuttan=—vae] (6.19)

it

which represents a squeezed Gaussian moving in the Moyal plane because w is time
dependent. Note that even though higher rank solutions may feature seperate lumps in
the energy density on the Moyal plane these move with equal velocity and thus do not
represent genuine multi-solitons as the latter term is reserved for multi-lump solutions
with mutually different velocities. These will be the subject of discussion in the next
section.

As in the static case it is worthwhile to investigate this solution in the operator for-
malism, as well. Employing the Moyal-Weyl map (ZI2) we associate to the co-moving
coordinate w an annihilation operator c¢ via

w < V20c, where v is chosen such that [c,c'] = 1. (6.20)



6.2 Time-dependent multi-solitons 81

By definition, ¢ annihilates the co-moving vacuum |v), i.e. ¢ [0) = 0, and the BPS equation

(ETD) now becomes
(L-P)cP =0, (6.21)
which, upon parametrizing the projector again as
P = |T)(T|T)~ (T
is solved in the abelian case similar to the static situation by
Ty = (IT)IT) . IT)) with [T = e [3), (6.22)

for o; € C.

A change v — v’ of the velocity of this solution is mediated by an inhomogeneous
SU(1,1) squeezing transformation given by a successive time-dependent translation (EZS])E
followed by a squeezing (2.27)) transformation with

¢ = S@)DW, 1) eDH T 1) S(@') aswellas |07) = S(@)DE,4)|5)  (6.23)

and all co-moving vacua are generated in this way from |0). The simple rank 1 moving-
soliton is thus given by

By (t) = exci-ac (11 _ETR |77)(17|) e—(aci=ac) (6.24)
i

We may map this soliton again back to the Moyal plane using the inverse Moyal-Weyl

map (214 to obtain (E.19).

6.2 TIME-DEPENDENT MULTI-SOLITONS

Let us now proceed to multi-soliton solutions with nontrivial time dependence which
may also be generated by the dressing approach introduced above. Mentioning only the
most important results of the given references we remark that a generic U(1) r-soliton is
constructed in a manner similar to (622) via rows of states

(‘T(k)>> k=1...r

i=1...Tk
parametrized by (i1, ..., i) and thus by corresponding velocities (3, ... ,9,.). These
states are subject to the BPS conditions
| T®Y = |[TOYTW  with ¢, = S(T;) D(Vh, t) a D(Tk, t)T ST () (6.25)

“the precise dependence on the time ¢ being more complicated [73]
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and rj,xr, matrices I'®). For a basis in which I'® is diagonal the constituents of the
solution are given by

k

7MY = el ) with |u) = S(5,) D(T ) ]0). (6.26)

7

Hence the |vy) are the co-moving vacua with velocities v,. Solutions constructed in this
way describe r-soliton solutions where each lump moves with a different velocity in the
noncommutative plane and which do not scatter.

As an example, the exact two-soliton solution of rank two in the abelian Ward model
reads [73]
(1—E0)[AN2[2)(1] 4 (1—£2)[2)(1[1)(2]

A1) = 1= TRy~ a1y
(6.27)
(1) 1)(1[2)2] + (1) [2)2 11
IR — 1)
with
po= Wtgue il and k) = S(u) Dl t) Jax) for k=1,2. (6.28)

Here, p parametrize the distinct constant velocities of the two solitons like in (E12), and
a1 # g are their positions at ¢ = 0. The unitary transformations S D boost the vacuum
state, and so the time-dependent states | k) are just co-moving frame vacua for the two
lumps.

In the static limit p; — —i the configuration (6.27)) tends to the static solution (ELZ5H)
as long as oy # «s. Furthermore, for large times, the overlap (1|2) dies away and we
are left with widely seperated solitons moving independently of one another in the non-
commutative plane. The constancy of the velocities implies that the two solitons do not
scatter off one another since scattering would lead to different velocities in the limits
t — + 0ol This is also evinced by a no-force property of Ward solitons, borne out by
their energy additivity:

E[®y] = E([®1(th)] + E[®1(t)]. (6.29)
In fact, (62Z7) was constructed by dressing (624) with a copy.

It is possible to extend these considerations to solutions exhibiting scattering by em-
ploying an ansatz () with higher order poles. This can be achieved by considering
the limit of coincident velocities in the above setting. A thorough analysis of this idea
[74, 127] indeed yields scattering solutions in the case of U(n) with n > 1 where the
lumps are found to scatter at rational angles 7 for ¢ € N. Scattering solutions are of
particular interest to us since the adiabatic approximation considered in the next chapter
yields scattering of solitons in the U(1) case.

Let us therefore exemplify this coincident velocity limit, or fusion, by considering the
fusion of the abelian two-soliton (627)). This is achieved by putting oy = ay = « and

5The same argument applies to the nonabelian case as well as long as the lump velocities are distinct.
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sending both velocities to zerofl Tn this limit a new type of time dependence emerges.

Putting in (6.27)
puip = —i+e, aswellas puy = —i—e with e € C, infinitesimal (6.30)

and observing that |73, [74]

. . —|e|? ¢2 e €
S(—ike)D(—i%et)|a) = el P eractVO (1 5 gl 4 O(?))]a), (6.31)
we learn that any time dependence comes in the combination of et/+/20. It is crucial

to observe that the limits ¢ — 0 and |t| — oo do not commute, and so the asymptotic
behavior of (6.27)) is modified under fusing. The result is

By(t) = limdy(t) = (1 - 2%) (]1 - 2@%‘), (6.32)

@) = |a) — ity/2 D) with |of) = (af —a)l|a) (6.33)

being orthogonal to |a). More explicitly,

Bo(t) = 1 — {2t2 (JaXe] + |a oY) — it@(|a)<oﬁ|+|0ﬁ)<a\)}, (6.34)

0 + 2t2

which at ¢t = 0 momentarily degenerates to D, = 1.

Putting o = 0 for simplicity, the energy density £ of (634 is readily computed to
be [[74]

E[®.] = ﬁ {(I0><0\+!1><1|) + 27752(2|o><0\+|1><1y+|2><2\)
+ %(uxu - \2><2])27752(%\2><oy + %\oxz]) (6.35)
3/243
- i293—/2(I1><0| —[0X1] + 512X = %|1><2|)}

with E[®,] = 27 6 Try € = 167, as should be since the energy is additive under dressing
and unchanged under fusing. Employing the Moyal-Weyl correspondence, the energy
density in the Moyal plane takes the form [74]

. 16er°/0 p2 ,02 p4 212 p2 p4 At
By = —2C [ (N p
&l = gy 585+ (55w 636)

2 2t3

G

6 The more general situation of merely equal velocities is related by boosting the center of mass.
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where p := /22 4+ y?. Unfortunately, this energy distribution is invariant under space-
time inversion and has a ring-like structure in the Moyal plane, localized at the origin like
a bound state or breather solution as can be seen from the graphs below.
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Figure 6.1: Energy density of breather solution ford =1latt= -5t =15,t=0,t=1.5
and t = 5 (from left to right).

Hence, we do not find any scattering solutions with = 2 in the noncommutative U(1)
Ward model. This may, of course, be an artefact of our restricted ansatz. A more careful
analysis by means of relaxing the first projector, allowing for higher-rank projectors and
admitting time-dependent coefficients, however, also leads to no scattering solutions.

Recently it has been established |19, 20] for the commutative case that all Ward model
multi-solitons are obtained from the one-soliton configurations (624]) by dressing and
fusing operationsﬂ and it therefore seems doubtful whether abelian scattering solutions
exist at all.

Interestingly, the nonabelian Ward model is very different in this respect because
of its larger moduli space. Fusing the U(2) two-soliton solution also features ring-like
configurations but also admits moduli choices which produce genuine 90° scattering, in
the commutative [T21), 68, B, K9] as well as in the noncommutative [74] case.

7 This result presumably extends to the noncommutative case.



CHAPTER 7

ADIABATIC APPROXIMATION AND SOLITON
DYNAMICS

Field theories with a nontrivial vacuum structure often feature static localized finite-
energy solutions as was exemplified for the Ward model in chapter Al These lumps can be
boosted to moving solitons with constant velocity. An interesting aspect in this analysis
of time-dependent solutions is the question of soliton scattering, which in most theories,
however, is accessible only numerically Alternatively, a qualitative understanding of
soliton scattering can be achieved for small relative velocity via the adiabatic or moduli-
space dynamics invented by Manton [85], 86] whose application to the noncommutative
Ward model will be discussed in this chapter.

In order to test the validity of this adiabatic method, one would need to apply it to
an integrable model, where exact multi-soliton solutions are available for comparison. As
we have seen before, such theories are rare in two or more spatial dimensions, which are
required for interesting trajectories and our prime example of the modified nonlinear sigma
model seems ideally suited for these purposes due to its integrability and the existence
of genuine time-dependent multi-soliton solutions. Recently, the adiabatic approach was
tested in this model for the commutative setting and the case of SU(2) [60, 27, 6T]. It
appears rewarding to extend this analysis to field theories on noncommutative spaces
investigating the new features appearing there and some effort has already been put into
this endeavor for the case of the CP! model [37].

As we have seen in section B33, the Ward model is closely related to noncommuta-
tive scalar field theories upon implementing the sigma-model constraint in unconstrained
(multi-component) scalar field models by choosing an appropriate potential and perform-
ing an infinite-stiffness limit. Therefore, the soliton analysis of generic noncommutative
field theories in 142 dimensions |53, 42, 2l 8], 43, 48| applies to noncommutative sigma
models without WZW-like term, as well. Furthermore, it will turn out that the adiabatic
approach does not see the WZW-term. By considering the family of extended U(1) sigma
models introduced in ([B60) the results presented here thus allow us to encompass both
the noncommutative sigma models without WZW-like term and the Ward model with
our analysis of the moduli-space dynamics.

In the next section we review the basic ideas of Manton’s adiabatic approach and
afterwards comment on general features as applied to the model at hand. This exposition
is then followed by an analysis of the moduli-space scattering trajectories for two Ward

! Exceptions are integrable theories, which allow for analytic multi-soliton configurations and an exact
S-matrix.
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solitons which in this approach exhibit scattering angles between 0 and 7. In the final
section of this chapter we remark on how this compares to the known exact results which
do not show this scattering behavior. It thus appears that the adiabatic approximation
fails in this integrable case and we comment on possible reasons for this mismatch.

7.1 MANTON’S ADIABATIC APPROACH

The general idea of the adiabatic approach [85, R6] is to approximate the exact r-soliton
scattering configuration by a time sequence of static r-lump solutions. Thereby one intro-
duces a time dependence for the latter’s moduli «;, which is determined by extremizing
the action on the moduli space M,. Being a functional of finitely many moduli «;(?),
this action describes the motion of a point particle in M,., equipped with a metric g;;(«)
and a magnetic field A;(«). The geodesic motion in this geometric setup is believed to
approximate exact time-dependent solutions in the limit of small velocities.

The program to carry out the adiabatic approach thus looks as follows [27]:

i. Construct finite-dimensional families of solutions to the static equations of motion
B3).

ii. Allow for time dependence of the moduli {a;} and rewrite the Lagrangian in a
canonical form, i.e. as kinetic term plus possibly a magnetic and a potential term
yielding the metric g, the magnetic one-form A and the potential V.

iii. Analyze the geodesic motion, possibly with magnetic forcing and a potential, to
approximate the slow velocity limit of non-static solutions.

7.2 SOLITON MODULI SPACE FOR ABELIAN SIGMA MODEL SOLITONS

7.2.1 General procedure

Let us turn our attention again to the abelian version of our family of sigma model actions
(BE0) or its operator picture analogue. For the adiabatic approximation, we need to find
the static multi-lump solutions ® with 0,® = 0 to the corresponding equation of motion
([£2). Since static configurations do not contribute to S3 the moduli space of static multi-
lumps is the same for all 4. It can be more precisely defined by our knowledge of the
r-soliton solutions (E43) or ({ZH) encountered in chapter @l The r-lump moduli space M,
is parametrized by all collections of r harmonic-oscillator coherent states and is therefore
given by the r-fold symmetric product of the single-soliton moduli space C, i.e.

M, = C'/S,, (7.1)

where the symmetrization is induced by the fact that a permutation of the soliton locations
leaves the configuration unchanged. This moduli space is a smooth Ké&hler manifold
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despite the coordinate singularities at the coincidence loci [43], which can be shown by
passing to a different set of coordinatesE and we will deal in more detail with its Kahler
potential and metric below. In fact, M, is a complex submanifold of the Grassmannian
Gr(r,H) introduced in (B2) and (EH). Moreover, it is known that C"/S, = C" as a
complex manifold.

Manton posits that the motion of r slowly scattering solitons is well described by a
geodesic trajectory in M,., possibly with magnetic forcing. Since among the moduli are
the spatial locations of the individual quasi-static lumps, (a projection of) the geodesic
in M, may be viewed as trajectories of the various lumps in the common ambient space.
Abbreviating the r complex moduli by «, we denote the static r-lump solution by ®(«).
To extract the time dependence in the action, we delineate the latter in a simplified form
as

S [®] = 7 /dt Try [00* + C(9,9)d — W(D, )] (7.2)

with ' = ([aT, CID}, [a, <I>]) . The adiabatic method implies the approximation
O(t) ~ d(alt)), (7.3)
thus replacing dynamics for ®(t) with dynamics for «(t). We are instructed to compute

Smoale] = S[® (a(t))]

- w/dt [e{TrH <aaq>(a))2}a2 + {TrHC@(a),CID'(a)) 8a<I>(a)}d

7.4
~ Try W (@), ¥'(a) | i

=: /dt (4 9aa(@)d® + Ag(a)d — V(a)]

to read off the metric g, magnetic field F' = dA and potential V' on the moduli space. As
mentioned above this moduli space has a natural Kéhler structure, whose Kéahler potential
will turn out to be given by the determinant of the matrix of coherent-state overlaps [43].
Furthermore, we will see that there is no magnetic background field and no potential in
the case considered.

7.2.2 Application to the noncommutative abelian Ward model

Let us implement this program for the extended deformed abelian sigma model and con-

sider the solution (E44)). Putting o; — «;(t) introduces t-dependence into
la) = (Jau),. . ]aw)) — Po = |a)t=(a] — @) = 1-2P,. (7.5)

(ala)

Inserting this into the action (B30) we make two important observations. Firstly,

S3[P(ar)] ~ /dt@t Try[(a+a') P,] = /dt {8%. TrH[(aJraT)Pa}} &; + cc., (7.6)

2The new coordinates are precisely given by the states in (FEZ3)
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which reveals the magnetic potential to be exact, A; = 0,,2. Thus, magnetic forcing is
absentE and Spq is independent of . Secondly, we get,

So[®(a)] = /dt TrH[ﬁg}cj)(a)IQ _ 2#}[(1,@(@)]’2}

(7.7)
= /dt [47?0T1"H P2 - E[CI)(a)]] .
Because E[®(a)] = 8 r is constant inside M,, the second term yields an irrelevant
constant potential V' and can be dropped.
As a result, Syoq reduces to the kinetic part of S3[®(«)], which simplifies to
Smod|[® ()] = 4m6 /dt Try P? = 8nb /dt Try (1 — P,)|d&) (a|a)H{d]
= 8nf /dt tr, (ala) Ha|l — P,|d) (7.8)
=: /dt Zgw Q; 0y
i,7=1
where .
&) = Oya) = a'|a)T with T :=diag({os}). (7.9)

Hence, abbreviating 0,, := 0; and 0; := 05, the metric on M, is given by
g = 870 Try 0,;P, 0; P, = 870 tr, {a|a) t 0,T'" (ala (1—P,) a’la) O,T . (7.10)
Using the shorthand notation

M = (My) = ((ala)y) = ((aley) = €¥), (7.11)

one computes

Smod = 8#0/dt tr, (ala)" T (ala (1=P,) afla) T

= 87r0/dtZM &; (aila (1-Py) a'lay) 6

i,7=1
, (7.12)
= 87T0/dtz z] 1+040z] Z MimamMn_wll@nMnj} @Z(I]
i,7=1 m,n=1
- 8w9/dtz M FTTMT—MT M- 1F*M}“ &idy
i,7=1 4

3 The holonomy of A = A,da may yet be nontrivial.



7.2 Soliton moduli space for abelian sigma model solitons 89

which reveals the hermitian metric (g;;) on M,. With the help of the identities
oM = T'MoT and M = 9I"MT, (7.13)

it is straightforward to check that this metric is indeed Kéhler and derives from the Kédhler
potential

K = 8nfIndet M = 876 In det ({os]a;)) = 876 In det (e%). (7.14)

This result agrees with the geometric intuition: up to the prefactor of 876, the metric
g;; = 0;0; K is the natural one on the Grassmannian Gr(r, H), which also has an interesting
interpretation in terms of a system of classical identical particles [50} BT].

Global rotations (220]) and translations (223) shift the K&hler potential by a gauge
transformation,

K — K + 870 ) (Bo;+ pa;+B), forBeC, (7.15)

i=1

leaving the metric unchanged. Furthermore, ([ZI4)) is invariant under permutations of the
«;. When passing to center-of-mass and barycentric coordinates

5 = %Zai and w; = «; —s, such that Zwi:O. (7.16)

i=1 i=1
we thus get the decomposition
K = 8nfr|s|” + 870 In det ("), (7.17)

which shows that the metric depends only on difference coordinates o;;—c;. One may also
extract the diagonal (free) part via

K = 810 |a;* + 870 In det (2l + a(@ey=ao0) (7.18)
i=1
From this expression it is easy to see a cluster decomposition property: Upon splitting
the moduli into two groups, {«;} = {a}, all,}, and separating these to infinity,

lim  K({o}) = K({oy}) + K({a},}), (7.19)

|y — gy, | =00

such that the potential decomposes into two disjoint parts. In particular, an isolated
single lump at «, asymptotically contributes with |a,|* to K. Therefore, the moduli-
space metric becomes flat for large mutual separations, |o;—o;| — 0.

More interesting is the limit of coinciding lumps, say a; — « for i = ¢q,...,¢.. Some
lengthy algebra then shows that

K — 8nf Z In |ag,—a,, | + K', where K' = Indet((T|T)) (7.20)

qe>qm
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with the following replacement inside |T') = (|ov), ..., |o)):

{log): log), - lag)}  —  {la).dlla),..., ﬁ(aT)”’l\Oz}} : (7.21)

The coordinate singularity in ([Z20) can be removed by passing to new coordinates, namely
elementary symmetric polynomials in «,, —a, which correspond precisely to the new states
in (IZZT) (see also the discussion at the beginning of this section). The expression K’ pro-
duces the same metric as K but is smooth at the coincidence locus. In the most general
situation, |T") is composed of various blocks like in ([ZZT), of different sizes r (see also
the general solution ({E43)), but the formula for the smooth Kahler potential K’ in ([Z20)
remains correct.

7.3 MODULI-SPACE TRAJECTORIES FOR TWO-SOLITON SCATTERING

For concreteness, let us display the simplest nontrivial case, i.e. r=2. We are thus dealing
with a rank two soliton. The moduli space M, of rank-two BPS projectors is parametrized
by {a, 8} ~ {B,a} € C?/S,. Since the details have been given in [8T], we can be short
here.

The static two-lump configuration is derived from (f4H) as
Dog = 1— 2Py
) (B18) (| + ) {ala) (8] — o) (] B){B] — [B){(Bla)tal — (722)
() (B15) = (alB)(Ber) '

Writing o = s +w and 3 = s — w as well as 2w =: pe¥, the corresponding Kihler
potential reads

=1 -2

K = 876 In (e“‘”w —eO‘BHﬂ) = 87?9[2 s5 + 2ww + In (1 —e_4ww)}
. > , (7.23)
= 876 In (2¢*** sinh ) = 8m0[2s5 + 1p* + In(1—e")],
with the limits . ) -
K = 8n0[2s5+ 3p° —e™” + O(e™™")] (7.24)
and K = 876[2ss+Inp” + Lp' + O(p%)] .

It yields the metric
d? = 16m0[dsds + Qdwdw| = 4xf[4dsds + Q(p°) (dp® + p*de?)] (7.25)
with the conformal factor
11— 2/)26_”2 —e %’ sinh p? — p?

2 _ 1 2 _ _
Qp?) = 3302 (0° 0pK) = 0 PP = b 1 (7.26)

possessing the limits
Qp*) = 1+ (1-2p%)e " +O(e™"),

(7.27)
aswellas Q(p%) = 1p> — &p° + O(p"),
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which can also be seen from the following graph.
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Figure 7.1: Conformal factor for moduli-space metric of rank 2 soliton.

Clearly, the metric becomes flat for p — oo but develops a conical singularity with
an angle of 47 at p = 0. The latter is removed by passing to the symmetric coordinate
o = w?, in terms of which one finds

A = 1670|dsds + 2= dodo|
(7.28)

= 1676 [dsdE + (3 — %00+ 0((07)?)) dad&} :

Due to the decoupling of the trivial center-of-mass dynamics, My = C X M., with
M.a =~ C rotationally symmetric, asymptotically flat, and of positive curvature, which
may be computed from the metric to R = 155[2 — & p*+O(p®)]. Head-on scattering of two
lumps corresponds to a single radial trajectory in M, which in the smooth coordinate o
must pass straight through the origin. In the ‘doubled coordinate’ w = /o, we then see

two straight trajectories with 90° scattering off the singularity in the Moyal plane.

This picture persists for the scattering of two composite lumps, i.e. lumps obtained by
fusing
o — « fori=1,...,7m

(7.29)
and a4 — B forj=1,...,r9.

The decoupling of the center-of-mass coordinate, now for r = ry+r,, is achieved by writing

a = s+rpw and B = s—riw, suchthat a—fB = (ri+r)w =: pe'?, (7.30)

and one obtains
K = 870[(ri+r)ss + 222 p* + In(1—Pe* +O(e )]

r1+7r2

(7.31)
= 870 [(ri+12)ss + co + cilnp® + wpt + O],
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where P is a polynomial in p? and ¢y, ¢; and ¢, are constants. As in (Z24)), the absence
of the p* term (and ¢, # 0) leads to a conformal factor  ~ p? for p — 0 and the same
conical singularity for any value of r; or ro. Its remedy by employing the coordinate
o = w? demonstrates that the 90° scattering angle is universal for head-on motion. Only
for more special situations with simultaneous head-on collision of r (>2) solitons one will
get T scattering.

Let us return to the simple case of 1y = r, = 1 and drop the center-of mass coordinate.
The motion in M, is geodesic with conformal factor Q(p?) given in (Z26)). It conserves
angular momentum and energy,

l2

Il = Qp*¢ = veb and e = %Qp2+ =

20,7 1, (7.32)

respectively, with the asymptotic speed v,, and the impact parameter

b = l/\/% = Pmin Q(p?nin)7 (7.33)

where pnin denotes the soliton distance at closest approach. Hence, the trajectory is given

by
d 2
- % VO 82/p2, (7.34)

and we obtain the scattering angle

o0 bd

o) = 1 — 2 / LA (7.35)
pmin P° /2 — 0%/ p?

which varies between 0 (for b — oo and Q@ — 1) and I (for b — 0 and Q — r?).

Therefore, if we fix b and vary v, the trajectory is unchanged. The total energy of the

r = 2 system is
Euod = E[®(a)] = 167 +8rfe = 167 + 4w 07, . (7.36)

Good agreement with the full field-theory dynamics is expected only for small values
of v,. Note however, that the trajectory p(¢) does not depend on ve.

For visualization the scattering angle ©(b) is plotted below for the cases 7, = 1 and
ro = 1 (triangles), 2 (diamonds), 4 (boxes). The underlying Mathematica code is given in
appendix
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Figure 7.2: Scattering angle © vs. impact parameter b.

7.4 COMPARISON WITH EXACT SOLUTIONS AND CONCLUSION

According to the general arguments about the adiabatic approximation, the moduli-space
dynamics described in the previous section should apply to the whole family S, of actions
in (B3d). To test the quality of the approach, one would like to compare the moduli-space
scattering trajectories with the time evolution of the energy-density maxima of the cor-
responding classical field configurations. Since widely separated lumps roam essentially
independently of each other, we already know the large-time asymptotics: a (multiplica-
tive) superposition of several one-soliton configurations of the form ®(«) = 1-2P,, after
applying individual translations and boosts. To simplify the discussion, let us consider
just two lumps of rank one each, i.e. combine two copies of &5 = 1—-2|0)}0| and comment
on their scattering behavior. For large times we must have

O(t — +o0) ~ (1 — (1-") Uy [0X0|U) (1 — (1—€%) Us |0)0] U3)

~ 1 — (1—ei5l)u1‘0><0|2/{;r — (1_6152)2/{2|0><0‘M;r7 (7.37)

where
U = UTT,pot) fori=1,2and t — Foo (7.38)

are unitary transformations implementing translations by p;* and boosts with velocities ;"

in the Moyal plane. Note that time-dependent solitons need no longer be grassmannian,
and so we must allow in (Z37)) for the slightly more general prefactors with velocity-
dependent phases 0; [73, [74]. If the scattering angle differs from =, i.e. if nontrivial

scattering occurs, then the late velocities @;" must differ from the early ones v .
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Outside the value y=1, the solitons are affected by each other’s presence, and no in-
tegrability protects them from shrinking and decay. Yet, in cases where their lifetime is
sufficiently long the configurations ([Z37) can still be approached for not too large times,
and scattering data are viable. In the absence of exact time-dependent solutions, how-
ever, numerical investigations are needed for confirmation. To the author’s knowledge,
computer analysis has been applied only in the commutative case (6=0) for y=0 in the
O(3) sigma model, where it established the universality of 90° head-on two-soliton scat-
tering [134]. Passing to the noncommutative realm, the equation of motion to solve in the
operator formulation for the U(1) sigma model, i.e. y=0, can be deduced from (B3]) as

0=00,(2'0,2) + [a, @'[a’, ®]] + [daf, ®[a, ?]]

(7.39)
=00,(9'9,®) + PTADP — ADTD.

With ® € U(H) viewed as an infinite-size matrix (®,,,) in the Fock space basis ([Z11), it

reads
0 0:(®;,,0:Pre) = (m—L) P Prp+ /(n+1) (L + 1) P, Py p41

=+ vV nE (I)qu)n—l —1 — VvV nm (I);kz—lm—l(bnf (740)
=V (nt1)(m+1) 74, P

It would be interesting to analyze this coupled initial-value problem numerically.

For the Ward model (y = 1), the situation is entirely different since exact multi-soliton
solutions are available as we have already seen in the previous chapter. Nevertheless, these
do not feature any scattering in the abelian case. Let us make this more explicit for the
two-soliton (E34). This solution can also be constructed directly by the dressing method,
starting from the ansatz (E32) with an unknown state |@). In this way one arrives at the
conditions [74]

a|d@) + [a, 2] @) = |a@) 7

and  0,(3) +1y/2 [of, 2] |5) = [3) 2,
where Z; and Z, are functions of ¢ to be determined. We read off that Z; = « and fix
the (inessential) normalization such that Zy = 0. It is not hard then to recover (6.33)
as the general solution indeed. To compare this solution with the adiabatic approach we
need to set same initial conditions. Matching of the energy E = 167 with Ep.q in (Z30)
enforces v, = 0 which, however, does not restrict b in any way. Therefore even for small
velocities, the energy density of the two-soliton solution (E34) does not follow the moduli-
space dynamics of the previous section, except, of course, at very large impact parameter
where the scattering disappears. As mentioned, the search for exact abelian two-soliton
solutions exhibiting scattering also turned out to be fruitless.

(7.41)

In summary, the moduli-space motion of the considered solution therefore does not
approximate the extended abelian sigma-model soliton scattering in the Moyal plane
equally well for all values of the family parameter v. Numerical analysis is needed to make
the case for v < 1. For the integrable value v = 1, i.e. the abelian Ward model, however,
we are curiously lacking the field-theory dynamics which the moduli-space kinematics
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is supposed to mimicH Tt is therefore conceivable that in this case, even for arbitrary
small velocities, the soliton scattering takes place far away from their moduli space, if
it occurs at all! Certainly, the known no-scattering multi-solitons are not seen in the
moduli space, which challenges Manton’s paradigm. In part responsible for this failure
seems to be the absence of magnetic forcing in the moduli space in contrast to the crucial
importance of the WZW-like action term for integrability. Another obstruction could be
the proven instability of each static multi-soliton configuration in the unitary model (see
section BT4l). Further analysis of this conundrum is definitely expedient and perhaps a
numerical study can give further insight.

Finally we remark that an attempt to extend these considerations to the nonabelian
case has, at least up to now, been to no avail due to the encountered technical difficulties.
To make this more comprehensible consider the kinetic part of the action (L) given for
the parametrization P = |T)(T|T)~*(T| by

Siin[P] = 47r0/dt Tr P? = 87n9/dt Tr (1 — P)|T) (T|T) (T (7.42)

with M = (T'|T) similar to (I1]). The main difference to the abelian case being that M is
now an infinite dimensional matrix. In order to carry through the adiabatic approximation
in this setting we need to consider more general solutions than the simple ones given in
(X)) to incorporate all the moduli. The U(2) rank 1 soliton, for example, is in analogy
to the commutative case (compare the literature cited at the beginning of section BZTI)
given by

A .
Ty = (a—l—a) |H) with A\, a € C. (7.43)
Upon endowing the moduli, of which « corresponds to the center of mass position, with
a time dependence this leads to

TP = Sy —% 7.44
g kz )\)\+k kz )\)\+k; (7:44)

To get a finite contribution to the kinetic energy we have to demand A=0 and thus
encounter a phenomenon known as frozen degrees of freedom [85] 27|, where some of the
moduli have to be kept at fixed value to get results. The remaining term then yields
Tr P2 = &, as expected for the single soliton. Turning now to rank 2, one has to start
with

A
|T) = (a2 +ea+§) |H), for X\ e & eC. (7.45)
We do not know how to invert the matrix M, which in this case turns out to be an infinite
dimensional pentadiagonal matrix, i.e. with entries only on the diagonal and the first two
upper and lower diagonals. It is interesting to compare this to the commutative case,

4 This also applies to the no-scattering solutions of the nonabelian models.
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where the same analysis has been done recently in [27] using the earlier work of [I17].
The authors arrive at elliptic integrals in this context and it seems worth trying to map
our problem back to the noncommutative plane via the Moyal-Weyl map to see whether
similar results can be achieved.



APPENDIX A

NUMERICAL CODE

In this appendix we collect the Mathematica code used for the computation of the presented
numerical results. To make the exposition more readable, we omit some technicalities and
concentrate on the main ideas.

A.1 EIGENVALUES FOR THE HESSIAN

Computing the eigenvalues of the Hessian as explained in section b.2.3lis a rather straight-
forward task. For a rank r diagonal U(1) BPS-solution and a diagonal perturbation the
main task is to input the matrix representation of the corresponding Hessian (5.60l), which
is done by

del[i_, j_] := KroneckerDeltali, jl;

matrix[maxel_] :=
Table[(2j+1) dell[i,jl - j delli+1,j] - (j+1) dell[i,j+1]
-2r (dellj,r-1] + dellj,r]) delli,jl],
{i, 0, maxel}, {j, O,maxell}];

Here, maxel denotes the value of the cut-off parameter. Mathematica then allows to
compute the eigenvalues, sort them and plot their dependence on the cut-off value by

evlist[maxel_] := Sort[Eigenvalues[N[matrix[maxellll];

plotlist = Flatten[Table[{1l,Part[evlist[1],k]},
{1,1,maxel}, {k,1,1}1,1]1;

ListPlot[plotlist];
The same code may be used to obtain corresponding results for off-diagonal fluctuations

by changing the input matrix.

A.2 SCATTERING ANGLE FOR TWO-SOLITON SCATTERING

The following code supplements the analysis of moduli space trajectories in section
It is used to compute the scattering angle as a function of the impact parameter for a
single soliton scattering off an r-fold degenerate soliton.
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As a first step, the overlap matrix M ([ZI1]) is computed for the r-soliton at position
« (alpha) and the one-soliton at position 3 (beta).

m[i_, j_, alpha_] :=
Which[i<j, Conjugate[alphal~(j-i)
Sum[alpha Conjugate[alphal~k / (k!(j-i+k)!'(i - kK)!),{k,0,i}]
i>=j, alpha~(i-j)
Sum[alpha Conjugatelalphal~k / (k!'(i-j+k)!'(j - kK)!),{k,0,j}];

sigmalalpha_, beta_] := Exp[Conjugate[alphal betal
- 1/2 (Abs[alphal~2 + Abs[betal~2)];

Mel[r_, alpha_, beta_l[i_, j_] :=
Which[i<=r & j<=r, ml[i-1,j-1, alphal,
i<=r  && j==r+1, beta~(i-1) sigmalalpha,betal / (i-1)!,
i==r+1 && j<=r, Conjugate[betal~(j-1)
Conjugate[sigmalalpha, betall / (j-1)!,
i==r+1 && j==r+1, 11;

M[r_, alpha_, beta_] := Array[Mell[r, alpha, betal, {r+1, r+i}]l;

This allows us to compute the Kéahler potential K and conformal factor €2 in relative
coordinates]

1 1
a = 7’+1<(T+1>S+w) and [ = H_—l(('r—i—l)s—rw), (A1)

by

alphalr_, s_, w.] := (1/(r+1)) ((r+1)s + w);

betalr_, s_, w_1 := (1/(r+1)) ((r+l)s - r w);
K[r_, s_, w_] := r alphalr, s, w] Conjugatel[alphalr, s, wl]
betalr, s, w] Conjugatel[betalr, s, wl]
Log[Det[M[r, alphalr, s, w], betalr, s, wllll;

+ + R

Omegalw_] = 1/4 (Derivative[0, 2] [K][r, 0, wl
+ 1/w Derivative[0, 1]1[KIl[r, 0, wl);

Finally we can compute the scattering angle © as a function of the impact parameter b

using (IZ35):

Thetalb_] := Pi - 2 NIntegrate[l / (w((w\b)~2 Omegalw] - 1)~(1/2)),
{w, w/.FindRoot[w~2 Omegalw] == b~2, {w,1}], Infinityl}];

LThe definition employed slightly differs from the one in ([ZZ30) but the final result does not change.
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Moduli-Space Dynamics of Noncommutative Abelian Sigma-Model Solitons
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In the noncommutative (Moyal) plane, we relate exact U(1) sigma-model solitons to
generic scalar-field solitons for an infinitely stiff potential. The static k-lump moduli
space CF /S, features a natural Kihler metric induced from an embedding Grassmannian.
The moduli-space dynamics is blind against adding a WZW-like term to the sigma-model
action and thus also applies to the integrable U(1) Ward model. For the latter’s two-
soliton motion we compare the exact field configurations with their supposed moduli-
space approximations. Surprisingly, the two do not match, which questions the adiabatic
method for noncommutative solitons.

Andrei V. Domrin, Olaf Lechtenfeld, Stefan Petersen

Sigma-Model Solitons in the Noncommutative Plane: Construction and Stability
Analysis

JHEP 0503 (2005) 045 [hep-th/0412001]

Noncommutative multi-solitons are investigated in Euclidean two-dimensional U(n) and
Grassmannian sigma models, using the auxiliary Fock-space formalism. Their construc-
tion and moduli spaces are reviewed in some detail, unifying abelian and nonabelian
configurations. The analysis of linear perturbations around these backgrounds reveals
an unstable mode for the U(n) models but shows stability for the Grassmannian case.
For multi-solitons which are diagonal in the Fock-space basis we explicitly evaluate the
spectrum of the Hessian and identify all zero modes. It is very suggestive but remains to
be proven that our results qualitatively extend to the entire multi-soliton moduli space.
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